Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38647154

RESUMEN

Molecular generative models have exhibited promising capabilities in designing molecules from scratch with high binding affinities in a predetermined protein pocket, offering potential synergies with traditional structural-based drug design strategy. However, the generative processes of such models are random and the atomic interaction information between ligand and protein are ignored. On the other hand, the ligand has high propensity to bind with residues called hotspots. Hotspot residues contribute to the majority of the binding free energies and have been recognized as appealing targets for designed molecules. In this work, we develop an interaction prompt guided diffusion model, InterDiff to deal with the challenges. Four kinds of atomic interactions are involved in our model and represented as learnable vector embeddings. These embeddings serve as conditions for individual residue to guide the molecular generative process. Comprehensive in silico experiments evince that our model could generate molecules with desired ligand-protein interactions in a guidable way. Furthermore, we validate InterDiff on two realistic protein-based therapeutic agents. Results show that InterDiff could generate molecules with better or similar binding mode compared to known targeted drugs.


Asunto(s)
Proteínas , Proteínas/química , Proteínas/metabolismo , Ligandos , Unión Proteica , Diseño de Fármacos , Modelos Moleculares , Algoritmos , Sitios de Unión , Simulación por Computador
2.
Phys Rev Lett ; 128(7): 075001, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244411

RESUMEN

A new method for measuring the time-dependent drive flux at the hohlraum center is proposed as a better alternative to conventional wall-based techniques. The drive flux here is obtained by simultaneous measurement of the reemitted flux and shock velocity from a three-layered "cakelike" sample. With these two independent observables, the influence induced by the uncertainty of the material parameters of the sample can be effectively decreased. The influence from the closure of the laser entrance hole, which was the main challenge in conventional wall-based techniques, was avoided through localized reemitted flux measurement, facilitating drive flux measurement throughout the entire time history. These studies pave a new way for probing the time-dependent drive flux, for both cylindrical hohlraums and novel hohlraums with six laser entrance holes.

3.
ACS Appl Mater Interfaces ; 16(15): 19838-19848, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38569046

RESUMEN

Environment-friendly antisolvents are critical for obtaining highly efficient, reproducible, and sustainable perovskite solar cells (PSCs). Here, we introduced a green mixture antisolvent of ethyl acetate-isopropanol (EA/IPA) to finely regulate the crystal grain growth and related film properties, including the morphology, crystal structure, and chemical composition of the perovskite thin film. The IPA with suitable content in EA plays a key role in achieving a smooth and compact high-quality perovskite thin film, leading to the suppression of film defect-induced nonradiative recombination. As a result, the PSCs based on the EA/IPA (5:1) antisolvent showed a power conversion efficiency of 22.9% with an open-circuit voltage of 1.17 V.

4.
Rev Sci Instrum ; 81(7): 073504, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20687719

RESUMEN

A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda