Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2402384121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865272

RESUMEN

Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.


Asunto(s)
Mitocondrias , Oxidorreductasas , Proteínas de Plantas , Epitelio Pigmentado de la Retina , Animales , Mitocondrias/metabolismo , Ratones , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ciona intestinalis/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología
2.
J Biol Chem ; 299(11): 105275, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741457

RESUMEN

It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.


Asunto(s)
Aminoácidos , Epitelio Pigmentado de la Retina , Animales , Humanos , Ratones , Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Glutamatos/metabolismo , Glutamina/metabolismo , Nitrógeno/metabolismo , Prolina/metabolismo , Prolina Oxidasa/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
3.
Hum Mol Genet ; 31(9): 1370-1388, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34750622

RESUMEN

Mutations in NMNAT1, a key enzyme involved in the synthesis of NAD+ in the nucleus, lead to an early onset severe inherited retinal degeneration (IRD). We aimed to understand the role of nuclear NAD+ in the retina and to identify the molecular mechanisms underlying NMNAT1-associated disease, using a mouse model that harbors the p.V9M mutation in Nmnat1 (Nmnat1V9M/V9M). We identified temporal transcriptional reprogramming in the retinas of Nmnat1V9M/V9M mice prior to retinal degeneration, which begins at 4 weeks of age, with no significant alterations in gene expression at 2 weeks of age and over 2600 differentially expressed genes by 3 weeks of age. Expression of the primary consumer of NAD+ in the nucleus, PARP1, an enzyme involved in DNA damage repair and transcriptional regulation, as well as 7 other PARP family enzymes, was elevated in the retinas of Nmnat1V9M/V9M. This was associated with elevated levels of DNA damage, PARP-mediated NAD+ consumption and migration of Iba1+/CD45+ microglia/macrophages to the subretinal space in the retinas of Nmnat1V9M/V9M mice. These findings suggest that photoreceptor cells are especially sensitive to perturbation of genome homeostasis, and that PARP-mediated cell death may play a role in other genetic forms of IRDs, and potentially other forms of neurodegeneration.


Asunto(s)
Nicotinamida-Nucleótido Adenililtransferasa , Degeneración Retiniana , Daño del ADN/genética , Humanos , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526685

RESUMEN

We previously reported a model of progressive retinal degeneration resulting from the knockout of the retina-specific riboflavin binding protein, retbindin (Rtbdn-/- ). We also demonstrated a reduction in neural retinal flavins as a result of the elimination of RTBDN. Given the role of flavins in metabolism, herein we investigated the underlying mechanism of this retinal degeneration by performing metabolomic analyses on predegeneration at postnatal day (P) 45 and at the onset of functional degeneration in the P120 retinas. Metabolomics of hydrophilic metabolites revealed that individual glycolytic products accumulated in the P45 Rtbdn-/- neural retinas along with the elevation of pentose phosphate pathway, while TCA cycle intermediates remained unchanged. This was confirmed by using 13C-labeled flux measurements and immunoblotting, revealing that the key regulatory step of phosphoenolpyruvate to pyruvate was inhibited via down-regulation of the tetrameric pyruvate kinase M2 (PKM2). Separate metabolite assessments revealed that almost all intermediates of acylcarnitine fatty acid oxidation, ceramides, sphingomyelins, and multiple toxic metabolites were significantly elevated in the predegeneration Rtbdn-/- neural retina. Our data show that lack of RTBDN, and hence reduction in flavins, forced the neural retina into repurposing glucose for free-radical mitigation over ATP production. However, such sustained metabolic reprogramming resulted in an eventual metabolic collapse leading to neurodegeneration.


Asunto(s)
Proteínas del Ojo/genética , Piruvato Quinasa/genética , Retina/metabolismo , Degeneración Retiniana/genética , Animales , Ciclo del Ácido Cítrico/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Flavinas/metabolismo , Glucólisis/genética , Homeostasis , Humanos , Ratones , Piruvato Quinasa/metabolismo , Retina/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología
5.
J Biol Chem ; 298(1): 101441, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813793

RESUMEN

Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Dominant mutations in human IMPDH1 cause photoreceptor degeneration for reasons that are unknown. Here, we sought to provide some foundational information on Impdh1a in the zebrafish retina. We found that in zebrafish, gene subfunctionalization due to ancestral duplication resulted in a predominant retinal variant expressed exclusively in rod and cone photoreceptors. This variant is structurally and functionally similar to the human IMPDH1 retinal variant and shares a reduced sensitivity to GTP-mediated inhibition. We also demonstrated that Impdh1a forms prominent protein filaments in vitro and in vivo in both rod and cone photoreceptor cell bodies, synapses, and to a lesser degree, in outer segments. These filaments changed length and cellular distribution throughout the day consistent with diurnal changes in both mRNA and protein levels. The loss of Impdh1a resulted in a substantial reduction of guanine levels, although cellular morphology and cGMP levels remained normal. Our findings demonstrate a significant role for IMPDH1 in photoreceptor guanine production and provide fundamental new information on the details of this protein in the zebrafish retina.


Asunto(s)
Guanina , IMP Deshidrogenasa , Células Fotorreceptoras Retinianas Conos , Animales , Guanina/metabolismo , IMP Deshidrogenasa/metabolismo , Isoenzimas/metabolismo , Retina/citología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Conos/metabolismo , Pez Cebra
6.
J Biol Chem ; 298(9): 102387, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35985423

RESUMEN

Isocitrate dehydrogenase 3 (IDH3) is a key enzyme in the mitochondrial tricarboxylic acid (TCA) cycle, which catalyzes the decarboxylation of isocitrate into α-ketoglutarate and concurrently converts NAD+ into NADH. Dysfunction of IDH3B, the ß subunit of IDH3, has been previously correlated with retinal degeneration and male infertility in humans, but tissue-specific effects of IDH3 dysfunction are unclear. Here, we generated Idh3b-KO mice and found that IDH3B is essential for IDH3 activity in multiple tissues. We determined that loss of Idh3b in mice causes substantial accumulation of isocitrate and its precursors in the TCA cycle, particularly in the testes, whereas the levels of the downstream metabolites remain unchanged or slightly increased. However, the Idh3b-KO mice did not fully recapitulate the defects observed in humans. Global deletion of Idh3b only causes male infertility but not retinal degeneration in mice. Our investigation showed that loss of Idh3b causes an energetic deficit and disrupts the biogenesis of acrosome and flagellum, resulting in spermiogenesis arrestment in sperm cells. Together, we demonstrate that IDH3B controls its substrate levels in the TCA cycle, and it is required for sperm mitochondrial metabolism and spermiogenesis, highlighting the importance of the tissue-specific function of the ubiquitous TCA cycle.


Asunto(s)
Infertilidad Masculina , Isocitrato Deshidrogenasa , Degeneración Retiniana , Espermatogénesis , Animales , Ciclo del Ácido Cítrico , Humanos , Infertilidad Masculina/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Ratones , NAD/metabolismo , Semen/metabolismo
7.
Hum Mol Genet ; 30(8): 644-657, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33709122

RESUMEN

Nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) is required for nuclear nicotinamide adenine mononucleotide (NAD+) biosynthesis in all nucleated cells, and despite its functional ubiquity, mutations in this gene lead to an isolated retinal degeneration. The mechanisms underlying how mutant NMNAT1 causes disease are not well understood, nor is the reason why the pathology is confined to the retina. Using a mouse model of NMNAT1-associated retinal degeneration that harbors the p.Val9Met mutation, we tested the hypothesis that decreased function of mutant NMNAT1 has a greater effect on the levels of NAD+ in the retina than elsewhere in the body. Measurements by liquid chromatography with tandem mass spectrometry showed an early and sustained decrease of NAD+ in mutant retinas that was not observed in other tissues. To understand how consumers of nuclear NAD+ are affected by the reduced availability of NAD+ in mutant retinas, poly(ADP-ribose) polymerase (PARP) and nuclear sirtuin activity were evaluated. PARP activity was elevated during disease progression, as evidenced by overproduction of poly(ADP-ribose) (PAR) in photoreceptors, whereas histone deacetylation activity of nuclear sirtuins was not altered. We hypothesized that PARP could be activated because of elevated levels of oxidative stress; however, we did not observe oxidative DNA damage, lipid peroxidation, or a low glutathione to oxidized glutathione ratio. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining revealed that photoreceptors appear to ultimately die by apoptosis, although the low NAD+ levels and overproduction of PAR suggest that cell death may include aspects of the parthanatos cell death pathway.


Asunto(s)
Modelos Animales de Enfermedad , Mutación , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Animales , Apoptosis/genética , Cromatografía Liquida , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Degeneración Retiniana/metabolismo , Sirtuinas/metabolismo , Espectrometría de Masas en Tándem
8.
FASEB J ; 36(8): e22428, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35766190

RESUMEN

Photoreceptors consume glucose supplied by the choriocapillaris to support phototransduction and outer segment (OS) renewal. Reduced glucose supply underlies photoreceptor cell death in inherited retinal degeneration and age-related retinal disease. We have previously shown that restricting glucose transport into the outer retina by conditional deletion of Slc2a1 encoding GLUT1 resulted in photoreceptor loss and impaired OS renewal. However, retinal neurons, glia, and the retinal pigment epithelium play specialized, synergistic roles in metabolite supply and exchange, and the cell-specific map of glucose uptake and utilization in the retina is incomplete. In these studies, we conditionally deleted Slc2a1 in a pan-retinal or rod-specific manner to better understand how glucose is utilized in the retina. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Slc2a1 from retinal neurons and Müller glia results in reduced OS growth and progressive rod but not cone photoreceptor cell death. Rhodopsin levels were severely decreased even at postnatal day 20 when OS length was relatively normal. Arrestin levels were not changed suggesting that glucose uptake is required to synthesize membrane glycoproteins. Rod-specific deletion of Slc2a1 resulted in similar changes in OS length and rod photoreceptor cell death. These studies demonstrate that glucose is an essential carbon source for rod photoreceptor cell OS maintenance and viability.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Glucosa , Células Fotorreceptoras Retinianas Conos , Degeneración Retiniana , Segmento Externo de la Célula en Bastón , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Segmento Externo de la Célula en Bastón/metabolismo , Segmento Externo de la Célula en Bastón/patología
9.
Adv Exp Med Biol ; 1415: 457-463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440072

RESUMEN

The interphotoreceptor matrix (IPM) is the extracellular matrix between the photoreceptors and the retinal pigment epithelium (RPE). The IPM has two proteoglycans: the IPM proteoglycans 1 and 2 (IMPG1 and IMPG2, respectively). Patients with mutations on IMPG2 develop subretinal vitelliform lesions that affect vision. We previously created an IMPG2 knockout (KO) mice model that generates subretinal lesions similar to those found in humans. These subretinal lesions in IMPG2 KO mice retinas are, in part, composed of mislocalized IMPG1. In addition, IMPG2 KO mice show microscopic IMPG1 material accumulation between the RPE and the photoreceptor outer segments. In this work we discuss the possibility that material accumulation on IMPG2 KO mice retinas affects photoreceptor metabolism. To further investigate this idea, we used targeted metabolomics to profile retinal metabolome on IMPG2 KO mice. The metabolite set enrichment analysis showed reduced glutamate metabolism, urea cycle, and galactose metabolism suggesting affected energy metabolism in mice retinas of IMPG2 KO mice with subretinal lesion.


Asunto(s)
Proteínas del Ojo , Retina , Animales , Ratones , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Metaboloma , Ratones Noqueados , Proteoglicanos , Retina/metabolismo
10.
Exp Eye Res ; 215: 108899, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929159

RESUMEN

Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD), and a histologic hallmark of SFD is a thick layer of extracellular deposits beneath the retinal pigment epithelium (RPE). Previous studies of SFD patient-induced pluripotent stem cell (iPSC) derived RPE differ as to whether these cultures recapitulate this key clinical feature by forming increased drusenoid deposits. The primary purpose of this study is to examine whether SFD patient-derived iPSC-RPE form basal deposits similar to what is found in affected family member SFD globes and to determine whether SFD iPSC RPE may be more oxidatively stressed. We performed a careful comparison of iPSC RPE from three control individuals, multiple iPSC clones from two SFD patients' iPSC RPE, and post-mortem eyes of affected SFD family members. We also examined the effect of CRISPR-Cas9 gene correction of the S204C TIMP3 mutation on RPE phenotype. Finally, targeted metabolomics with liquid chromatography and mass spectrometry analysis and stable isotope-labeled metabolite analysis were performed to determine whether SFD RPE are more oxidatively stressed. We found that SFD iPSC-RPE formed significantly more sub-RPE deposits (∼6-90 µm in height) compared to control RPE at 8 weeks. These deposits were similar in composition to the thick layer of sub-RPE deposits found in SFD family member globes by immunofluorescence staining and TEM imaging. S204C TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in significantly reduced basal laminar and sub-RPE calcium deposits. We detected a ∼18-fold increase in TIMP3 accumulation in the extracellular matrix (ECM) of SFD RPE, and targeted metabolomics showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE, suggesting increased ECM turnover. Finally, SFD RPE cells have decreased intracellular reduced glutathione and were found to be more vulnerable to oxidative stress. Our findings suggest that elements of SFD pathology can be demonstrated in culture which may lead to insights into disease mechanisms.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Matriz Extracelular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 41(2): 769-782, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267657

RESUMEN

OBJECTIVE: Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results: Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD. CONCLUSIONS: Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Eritrocitos/efectos de los fármacos , Febuxostat/farmacología , Hemodinámica/efectos de los fármacos , Hemólisis/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Xantina Oxidasa/antagonistas & inhibidores , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/enzimología , Anemia de Células Falciformes/fisiopatología , Animales , Modelos Animales de Enfermedad , Eritrocitos/enzimología , Hígado/enzimología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Arteria Pulmonar/enzimología , Arteria Pulmonar/fisiopatología , Función Ventricular/efectos de los fármacos , Xantina Oxidasa/genética , Xantina Oxidasa/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(9): 3530-3535, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808746

RESUMEN

Glucose metabolism in vertebrate retinas is dominated by aerobic glycolysis (the "Warburg Effect"), which allows only a small fraction of glucose-derived pyruvate to enter mitochondria. Here, we report evidence that the small fraction of pyruvate in photoreceptors that does get oxidized by their mitochondria is required for visual function, photoreceptor structure and viability, normal neuron-glial interaction, and homeostasis of retinal metabolism. The mitochondrial pyruvate carrier (MPC) links glycolysis and mitochondrial metabolism. Retina-specific deletion of MPC1 results in progressive retinal degeneration and decline of visual function in both rod and cone photoreceptors. Using targeted-metabolomics and 13C tracers, we found that MPC1 is required for cytosolic reducing power maintenance, glutamine/glutamate metabolism, and flexibility in fuel utilization.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Retina/metabolismo , Visión Ocular/genética , Animales , Glucosa/metabolismo , Glucólisis/genética , Humanos , Ratones , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos , Ácido Pirúvico/metabolismo , Retina/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología
13.
J Proteome Res ; 20(1): 909-922, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32975122

RESUMEN

Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. Mitochondrial dysfunction in retinal pigment epithelium (RPE) cells is an emerging contributor to the death of their neighboring photoreceptors in degenerative retinal diseases including age-related macular degeneration. In this study, we used targeted-metabolomics and 13C tracing to investigate how inhibition of mitochondrial respiration influences the intracellular and extracellular metabolome. We found inhibition of mitochondrial respiration strikingly influenced both the intracellular and extracellular metabolome in primary RPE cells. Intriguingly, the extracellular metabolic changes sensitively reflected the intracellular changes. These changes included substantially enhanced glucose consumption and lactate production; reduced release of pyruvate, citrate, and ketone bodies; and massive accumulation of multiple amino acids and nucleosides. In conclusion, these findings reveal a metabolic signature of nutrient consumption and release in mitochondrial dysfunction in RPE cells. Testing medium metabolites provides a sensitive and noninvasive method to assess mitochondrial function in nutrient utilization and transport.


Asunto(s)
Mitocondrias , Epitelio Pigmentado de la Retina , Animales , Humanos , Nutrientes , Respiración , Retina/metabolismo
14.
J Biol Chem ; 295(8): 2324-2335, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31953322

RESUMEN

Defects in energy metabolism in either the retina or the immediately adjacent retinal pigment epithelium (RPE) underlie retinal degeneration, but the metabolic dependence between retina and RPE remains unclear. Nitrogen-containing metabolites such as amino acids are essential for energy metabolism. Here, we found that 15N-labeled ammonium is predominantly assimilated into glutamine in both the retina and RPE/choroid ex vivo [15N]Ammonium tracing in vivo show that, like the brain, the retina can synthesize asparagine from ammonium, but RPE/choroid and the liver cannot. However, unless present at toxic concentrations, ammonium cannot be recycled into glutamate in the retina and RPE/choroid. Tracing with 15N-labeled amino acids show that the retina predominantly uses aspartate transaminase for de novo synthesis of glutamate, glutamine, and aspartate, whereas RPE uses multiple transaminases to utilize and synthesize amino acids. Retina consumes more leucine than RPE, but little leucine is catabolized. The synthesis of serine and glycine is active in RPE but limited in the retina. RPE, but not the retina, uses alanine as mitochondrial substrates through mitochondrial pyruvate carrier. However, when the mitochondrial pyruvate carrier is inhibited, alanine may directly enter the retinal mitochondria but not those of RPE. In conclusion, our results demonstrate that the retina and RPE differ in nitrogen metabolism and highlight that the RPE supports retinal metabolism through active amino acid metabolism.


Asunto(s)
Nitrógeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Aminoácidos/metabolismo , Compuestos de Amonio/farmacología , Animales , Coroides/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Isótopos de Nitrógeno/metabolismo , Especificidad de Órganos/efectos de los fármacos , Piruvatos/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Retinaldehído/metabolismo
15.
Glia ; 69(8): 1966-1986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33835598

RESUMEN

The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A). We crossed Müller glial cell-CreER (MC-CreER) mice with transgenic mice carrying a floxed IR, HK2, PDH-E1α, LDH-A, or PHGDH gene to study the effect of selectively knocking down key metabolic genes in Müller glia cells on retinal health. Selectively knocking down IR, HK2, or PHGDH led to photoreceptor degeneration and reduced electroretinographic responses. Supplementing exogenous l-serine prevented photoreceptor degeneration and improved retinal function in MC-PHGDH knockdown mice. We unexpectedly found that the levels of retinal serine and glycine were not reduced but, on the contrary, highly increased in MC-PHGDH knockdown mice. Moreover, dietary serine supplementation, while rescuing the retinal phenotypes caused by genetic deletion of PHGDH in Müller glial cells, restored retinal serine and glycine homeostasis probably through regulation of serine transport. No retinal abnormalities were observed in MC-CreER mice crossed with PDH-E1α- or LDH-A-floxed mice despite Cre expression. Our findings suggest that Müller glia do not complete glycolysis but use glucose to produce serine to support photoreceptors. Supplementation with exogenous serine is effective in preventing photoreceptor degeneration caused by PHGDH deficiency in Müller glia.


Asunto(s)
Células Fotorreceptoras , Degeneración Retiniana , Animales , Células Ependimogliales/metabolismo , Ratones , Neuroglía/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Degeneración Retiniana/metabolismo
16.
Amino Acids ; 53(12): 1789-1806, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33871679

RESUMEN

The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.


Asunto(s)
Transporte Biológico/fisiología , Proteínas de Transporte de Membrana/metabolismo , Prolina/metabolismo , Retina/metabolismo , Animales , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología
17.
J Biol Chem ; 294(26): 10278-10289, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31110046

RESUMEN

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Prolina/administración & dosificación , Retina/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Radioisótopos de Carbono/análisis , Diferenciación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción , Prolina/farmacología , Retina/efectos de los fármacos , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/etiología , Epitelio Pigmentado de la Retina/efectos de los fármacos
18.
Exp Eye Res ; 198: 108140, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649951

RESUMEN

PURPOSE: Eyelid basal cell carcinoma (BCC) is the most common eyelid malignancy. Metabolic reprogramming is critical in tumorigenesis, but the metabolic feature of eyelid BCC remains elusive. In this study, we aim to reveal the metabolic profile in eyelid BCC using targeted metabolomics. Eyelid samples were collected from patients who had removal of BCC and from control patients who underwent blepharoplasty. Multivariate analysis of metabolomics data distinguished the two groups, indicating that eyelid BCC has significantly different metabolome than the healthy tissue. We found 16 increased and 11 decreased metabolites in the BCC tissues. These metabolites were highly enriched in the metabolism of nicotinamide adenine dinucleotide (NAD), glutathione metabolism, polyamine metabolism, and the metabolism of glycine, serine, threonine, arginine and proline. amino acid metabolism. Metabolites from NAD metabolism (Nicotinamide; Nicotinamide riboside; N1-Methylnicotinamide) had the highest sensitivity, specificity, and prediction accuracy in a prediction model for eyelid BCC. In conclusion, eyelid BCC has a signature change of cell metabolome. Metabolites in NAD metabolic pathways could potentially be biomarkers or therapeutic targets for eyelid BCC.


Asunto(s)
Carcinoma Basocelular/metabolismo , Neoplasias de los Párpados/metabolismo , Metaboloma/fisiología , Metabolómica/métodos , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma Basocelular/patología , Neoplasias de los Párpados/patología , Femenino , Humanos , Masculino
19.
Am J Physiol Cell Physiol ; 316(1): C121-C133, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462537

RESUMEN

The retina is one of the most metabolically active tissues in the body and utilizes glucose to produce energy and intermediates required for daily renewal of photoreceptor cell outer segments. Glucose transporter 1 (GLUT1) facilitates glucose transport across outer blood retinal barrier (BRB) formed by the retinal pigment epithelium (RPE) and the inner BRB formed by the endothelium. We used conditional knockout mice to study the impact of reducing glucose transport across the RPE on photoreceptor and Müller glial cells. Transgenic mice expressing Cre recombinase under control of the Bestrophin1 ( Best1) promoter were bred with Glut1flox/flox mice to generate Tg-Best1-Cre:Glut1flox/flox mice ( RPEΔGlut1). The RPEΔGlut1 mice displayed a mosaic pattern of Cre expression within the RPE that allowed us to analyze mice with ~50% ( RPEΔGlut1m) recombination and mice with >70% ( RPEΔGlut1h) recombination separately. Deletion of GLUT1 from the RPE did not affect its carrier or barrier functions, indicating that the RPE utilizes other substrates to support its metabolic needs thereby sparing glucose for the outer retina. RPEΔGlut1m mice had normal retinal morphology, function, and no cell death; however, where GLUT1 was absent from a span of RPE greater than 100 µm, there was shortening of the photoreceptor cell outer segments. RPEΔGlut1h mice showed outer segment shortening, cell death of photoreceptors, and activation of Müller glial cells. The severe phenotype seen in RPEΔGlut1h mice indicates that glucose transport via the GLUT1 transporter in the RPE is required to meet the anabolic and catabolic requirements of photoreceptors and maintain Müller glial cells in a quiescent state.


Asunto(s)
Células Ependimogliales/metabolismo , Transportador de Glucosa de Tipo 1/biosíntesis , Glucosa/metabolismo , Células Fotorreceptoras/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Células Ependimogliales/química , Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Fotorreceptoras/química , Epitelio Pigmentado de la Retina/química
20.
Proc Natl Acad Sci U S A ; 113(51): 14710-14715, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27911769

RESUMEN

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells that requires an active metabolism to maintain outer retinal homeostasis and compensate for oxidative stress. Using 13C metabolic flux analysis in human RPE cells, we found that RPE has an exceptionally high capacity for reductive carboxylation, a metabolic pathway that has recently garnered significant interest because of its role in cancer cell survival. The capacity for reductive carboxylation in RPE exceeds that of all other cells tested, including retina, neural tissue, glial cells, and a cancer cell line. Loss of reductive carboxylation disrupts redox balance and increases RPE sensitivity to oxidative damage, suggesting that deficiencies of reductive carboxylation may contribute to RPE cell death. Supporting reductive carboxylation by supplementation with an NAD+ precursor or its substrate α-ketoglutarate or treatment with a poly(ADP ribose) polymerase inhibitor protects reductive carboxylation and RPE viability from excessive oxidative stress. The ability of these treatments to rescue RPE could be the basis for an effective strategy to treat blinding diseases caused by RPE dysfunction.


Asunto(s)
Carbono/química , Ojo/embriología , Ácidos Cetoglutáricos/química , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/metabolismo , Anciano de 80 o más Años , Animales , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Ácidos Grasos/química , Femenino , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Degeneración Macular/patología , Ratones , NAD/química , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/química , Poli(ADP-Ribosa) Polimerasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda