Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 58(13): 5750-5759, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506744

RESUMEN

1,1-Difluoroethane (HFC-152a) is a hydrofluorocarbon regulated by the Montreal Protocol, and its emissions in China are of concern as China will regulate HFC-152a in 2024. However, no observation-inferred top-down estimates were undertaken after 2017, and substantial gaps existed among previous estimates of China's HFC-152a emissions. Using the atmospheric observations and inverse modeling, this study reveals China's HFC-152a emissions of 9.4 ± 1.7 Gg/yr (gigagrams per year), 10.6 ± 1.8 Gg/yr, and 9.7 ± 1.5 Gg/yr in 2018, 2019, and 2020, respectively. In addition, we display an overall increasing trend during 2011-2020, which is in contrast to the decreasing and steady trend reported by the Emission Database for Global Atmospheric Research (EDGAR) and the Chinese government, respectively. Subsequently, we establish a comprehensive bottom-up emission inventory matching with top-down estimates and thus succeed in explaining the gaps among previous estimates. Furthermore, the contribution of China's emissions to global HFC-152a emission growth increased from 15% during 2001-2010 to >100% during 2011-2020. An emission projection based on our improved inventory shows that the Kigali Amendment (KA) would assist in avoiding 1535.6-4710.6 Gg (251.8-772.5 Tg CO2-eq) HFC-152a emissions during 2024-2100. Our findings indicate relatively accurate China's HFC-152a emissions and provide scientific support for addressing climate change and implementing the KA.


Asunto(s)
Gases de Efecto Invernadero , Rwanda , China , Cambio Climático
2.
Environ Res ; 259: 119549, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964576

RESUMEN

Methane (CH4) is the second most abundant greenhouse gas. China is the largest CH4 emitter in the world, with coal mine methane (CMM) being one of the main anthropogenic contributions. Thus, there is an urgent need for comprehensive estimates and strategies for reducing CMM emissions in China. However, the development of effective strategies is currently challenged by a lack of information on temporal variations in the contributions of different CMM sources and the absence of provincial spatial analysis. Here, considering five sources and utilization, we build a comprehensive inventory of China's CMM emissions from 1980 to 2022 and quantify the contributions of individual sources to the overall CMM emissions at the national and provincial levels. Our results highlight a significant shift in the source contributions of CMM emissions, with the largest contributor, underground mining, decreasing from 89% in 1980 to 69% in 2022. Underground abandoned coal mines, which were ignored or underestimated in past inventories, have become the second source of CMM emissions since 1999. From 2011 to 2022, we identified Shanxi, Guizhou, and Shaanxi as the three largest CMM-emitting provinces, while the Emissions Database for Global Atmospheric Research (EDGAR) v8 overestimated emissions from Inner Mongolia, ranking it third. Notably, we observed a substantial decrease (exceeding 1 Mt) in CMM emissions in Sichuan, Henan, Liaoning, and Hunan between 2011 and 2022, which was not captured by EDGAR v8. To develop targeted CMM emission reduction strategies at the provincial level, we classified 31 provinces into four groups based on their CMM emission structures. In 2022, the number of provinces with CMM emissions mainly from abandoned coal mines has exceeded that of provinces with mainly underground mines, which requires attention. This study reveals the characteristics of the source of CMM emissions in China and provides emission reduction directions for four groups of provinces.


Asunto(s)
Contaminantes Atmosféricos , Minas de Carbón , Monitoreo del Ambiente , Metano , China , Metano/análisis , Contaminantes Atmosféricos/análisis
3.
Environ Sci Technol ; 57(48): 19557-19564, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37978918

RESUMEN

Having the highest ozone-depleting potential among hydrochlorofluorocarbons (HCFCs), the production and consumption of HCFC-141b (1,1-dichloro-1-fluoroethane, CH3CCl2F) are controlled by the Montreal Protocol. A renewed rise in global HCFC-141b emissions was found during 2017-2020; however, the latest changes in emissions across China are unclear for this period. This study used the FLEXible PARTicle dispersion model and the Bayesian framework to quantify HCFC-141b emissions based on atmospheric measurements from more sites across China than those used in previous studies. Results show that the estimated HCFC-141b emissions during 2018-2020 were on average 19.4 (17.3-21.6) Gg year-1, which was 3.9 (0.9-7.0) Gg year-1 higher than those in 2017 (15.5 [13.4-17.6] Gg year-1), showing a renewed rise. The proportion of global emissions that could not be exactly traced in 2020 was reduced from about 70% reported in previous studies to 46% herein. This study reconciled the global emission rise of 3.0 ± 1.2 Gg year-1 (emissions in 2020 - emissions in 2017): China's HCFC-141b emissions changed by 4.3 ± 4.5 Gg year-1, and the combined emissions from North Korea, South Korea, western Japan, Australia, northwestern Europe, and the United States changed by -2.2 ± 2.6 Gg year-1, while those from other countries/regions changed by 0.9 ± 5.3 Gg year-1.


Asunto(s)
Clorofluorocarburos , Clorofluorocarburos/análisis , Teorema de Bayes , Clorofluorocarburos de Etano , China
4.
Nat Commun ; 15(1): 1725, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409087

RESUMEN

According to the Montreal Protocol, the production and consumption of ozone-layer-depleting CCl4 for dispersive applications was globally phased out by 2010, including China. However, continued CCl4 emissions were disclosed, with the latest CCl4 emissions unknown in eastern China. In the current study, based on the atmospheric measurements of ~12,000 air samples taken at two sites in eastern China, the 2021-2022 CCl4 emissions are quantified as 7.6 ± 1.7 gigagrams per year. This finding indicates that CCl4 emissions continued after being phased out for dispersive uses in 2010. Subsequently, our study identifies potential industrial sources (manufacture of general purpose machinery and manufacture of raw chemical materials, and chemical products) of CCl4 emissions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda