Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Molecules ; 28(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570714

RESUMEN

Secoisolariciresinol (SECO) is one of the major lignans occurring in various grains, seeds, fruits, and vegetables. The gut microbiota plays an important role in the biotransformation of dietary lignans into enterolignans, which might exhibit more potent bioactivities than the precursor lignans. This study aimed to identify, synthesize, and evaluate the microbial metabolites of SECO and to develop efficient lead compounds from the metabolites for the treatment of osteoporosis. SECO was fermented with human gut microbiota in anaerobic or micro-aerobic environments at different time points. Samples derived from microbial transformation were analyzed using an untargeted metabolomics approach for metabolite identification. Nine metabolites were identified and synthesized. Their effects on cell viability, osteoblastic differentiation, and gene expression were examined. The results showed that five of the microbial metabolites exerted potential osteogenic effects similar to those of SECO or better. The results suggested that the enterolignans might account for the osteoporotic effects of SECO in vivo. Thus, the presence of the gut microbiota could offer a good way to form diverse enterolignans with bone-protective effects. The current study improves our understanding of the microbial transformation products of SECO and provides new approaches for new candidate identification in the treatment of osteoporosis.


Asunto(s)
4-Butirolactona , Lignanos , Humanos , Dieta , Lignanos/farmacología , Lignanos/metabolismo , Butileno Glicoles/farmacología , Butileno Glicoles/metabolismo
2.
Allergol Immunopathol (Madr) ; 50(5): 84-90, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36086968

RESUMEN

BACKGROUND: Long-term hyperoxia impairs growth of the lungs and contributes to development of bronchopulmonary dysplasia. Ectodysplasin A (EDA) binds to ectodysplasin A2 receptor (EDA2R) and is essential for normal prenatal development. The functioning of EDA2R in bronchopulmonary dysplasia is investigated in this study. METHODS: Murine lung epithelial cells (MLE-12) were exposed to hyperoxia to induce cell injury. Cell viability and apoptosis were detected, respectively, by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and flow cytometry. Inflammation and oxidative stress were evaluated by enzyme-linked immunosorbent serologic assay. RESULTS: Hyperoxia decreased cell viability and promoted cell apoptosis of MLE-12. EDA2R was elevated in hyperoxia-induced MLE-12. Silencing of EDA2R enhanced cell viability and reduced cell apoptosis of hyperoxia-induced MLE-12. Hyperoxia-induced up-regulation of tumor necrosis factor alpha (TNF-α), Interleukin (IL)-1ß, and IL-18 as well as MLE-12 was suppressed by knockdown of EDA2R. Inhibition of EDA2R down-regulated the level of malondialdehyde (MDA), up-regulated superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in hyperoxia-induced MLE-12. Interference of EDA2R attenuated hyperoxia-induced increase in p-p65 in MLE-12. CONCLUSION: Knockdown of EDA2R exerted anti-inflammatory and antioxidant effects against hyperoxia-induced injury in lung epithelial cells through inhibition of nuclear factor kappa B (NF-κB) pathway.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Animales , Displasia Broncopulmonar/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hiperoxia/patología , Recién Nacido , Pulmón/patología , Ratones , FN-kappa B/metabolismo , Receptor Xedar/metabolismo
3.
Bull Environ Contam Toxicol ; 110(1): 20, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36547725

RESUMEN

The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored.


Asunto(s)
Oryza , Suelo , Suelo/química , Triticum , Sulfametazina , Sulfonamidas , Bacterias/genética , Sulfanilamida , Fertilizantes/análisis , Microbiología del Suelo
4.
Ecotoxicol Environ Saf ; 207: 111275, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920316

RESUMEN

In-situ immobilization is an effective and economically viable strategy for remediation of soil extensively polluted with heavy metals. The long-term sustainability is critical for the remediation practice. In the present study, a ten-year experiment was performed in a Cd-polluted agricultural field to evaluate the long-term stability of lime, silicon fertilizer (SF), fused calcium magnesium phosphate fertilizer (FCMP), bone charcoal, steel slag, and blast furnace slag with one-off application. All amendments had no significant effect on biomass but significantly reduced Cd uptake by Artemisia selengensis at higher dose. Among them, SF and FCMP applied at 1% could reduce Cd uptake by more than 40% to meet the Chinese maximum permissible limit for Cd content in food products (50 µg kg-1). These amendments stimulated high Cd immobilization by increasing the soil pH and decreasing the soil acid-extractable Cd content, which were closely associated with Cd uptake. In addition, the two amendments altered the soil microbial structure and stimulated metabolism pathways, including amino acid, carbohydrate, and lipid metabolism, which are beneficial for soil function and quality. The results proved that SF and FCMP at 1% are stable and ecologically safe amendments, suitable for long-term Cd immobilization, and provide a strategy to mitigate the risk of food product contamination in heavy-metal-polluted soil.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Biomasa , Cadmio/metabolismo , Compuestos de Calcio , Carbón Orgánico/química , Contaminación Ambiental , Restauración y Remediación Ambiental , Fertilizantes , Metales Pesados/química , Óxidos , Fosfatos , Suelo/química
5.
Bull Environ Contam Toxicol ; 107(6): 1236-1242, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34164721

RESUMEN

Cadmium accumulation in rice is a major source of Cd exposure in humans worldwide. A three-year field experiment was conducted to investigate the ecological safety and long-term stability of biochar combined with lime or silicon fertilizer for Cd immobilization in a polluted rice paddy. The results showed that the application of combined ameliorants could reduce the Cd content in brown rice to meet the Chinese maximum permissible limit for Cd content in food products (0.2 mg/kg). In addition, such amendments stimulated metabolic pathways in soil bacteria, including carbon metabolism, citrate cycle, pyruvate metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, revealing improvements in soil biological activity and soil health. Therefore, the results provide a practical strategy for the safe utilization of farmland with mild levels of heavy metal pollution.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Contaminación Ambiental , Fertilizantes , Humanos , Suelo , Contaminantes del Suelo/análisis
6.
Bull Environ Contam Toxicol ; 104(6): 834-839, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32306073

RESUMEN

The interaction between metal oxide nanoparticles and toxin-producing cyanobacteria is relatively unknown. The present work exposed Microcystis sp.7806 to different concentrations of cerium oxide nanoparticles (CeO2 NPs) (1 mg/L, 10 mg/L and 50 mg/L), and evaluated the growth, photosynthetic activity, reactive oxygen species level, and the extra-(intra-) cellular microcystin-LR (MC-LR) contents. The particle size, zeta potential and cerium ions released into the medium were analyzed. Results showed 10 mg/L NP treatment promoted algae growth but slightly inhibited the photosynthetic yield of algae, and the 50 mg/L treatment reduced algae biomass. The algal cells remarkably responded to oxidative stress at higher concentrations (10 mg/L and 50 mg/L). CeO2 NPs largely increased the intracellular MC-LR content at 50 mg/L, and significantly reduced the extracellular MC-LR content at any concentration. This demonstrates CeO2 NPs may pose an ecological risk potential during harmful algal blooms by stimulating toxin production.


Asunto(s)
Cerio/toxicidad , Nanopartículas del Metal/toxicidad , Microcistinas/biosíntesis , Microcystis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Relación Dosis-Respuesta a Droga , Floraciones de Algas Nocivas/efectos de los fármacos , Toxinas Marinas , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Fotosíntesis/efectos de los fármacos
7.
Environ Sci Technol ; 53(10): 6007-6017, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31013431

RESUMEN

Engineered nanoparticles (NPs) with activities that mimic antioxidant enzymes have good prospects in agriculture because they can increase photosynthesis and improve stress tolerance. Here, the interaction between cerium oxide NPs with spinach plants ( Spinacia oleracea) was investigated by integrating phenotypic and metabolomic analyses. Soil-grown, four-week-old spinach plants were foliar exposed for 3 weeks to CeO2 NPs at 0, 0.3, and 3 mg per plant. Phenotypic parameters (chlorophyll fluorescence, photosynthetic pigment contents, plant biomass, lipid peroxidation, and membrane permeability) were not affected. However, metabolomics analysis revealed that both doses of CeO2 NPs induced metabolic reprogramming in leaves and roots in a non-dose-dependent manner. The low dose of CeO2 NPs (0.3 mg per plant) induced stronger metabolic reprogramming in spinach leaves than high dose of CeO2 NPs. However, the high dose of CeO2 NPs triggered more metabolic changes in roots, compared to the low dose. Foliar spray of CeO2 NPs at 3 mg/plant induced marked down-regulation of a number of amino acids (threonine, tryptophan, l-cysteine, methionine, cycloleucine, aspartic acid, asparagine, tyrosine, and glutamic acid). In addition, Zn decreased by 44% and 54% in leaves and Ca decreased by 38% and 32% in roots under exposure to CeO2 NPs at 0.3 and 3 mg/plant, respectively. These results provide better understanding of the intrinsic phenotypic and metabolic changes imposed by CeO2 NPs in spinach plants.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Metabolómica , Raíces de Plantas , Suelo , Spinacia oleracea
8.
Environ Sci Technol ; 53(20): 11714-11724, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509697

RESUMEN

Increasing CO2 levels are speculated to change the effects of engineered nanomaterials in soil and on plant growth. How plants will respond to a combination of elevated CO2 and nanomaterials stress has rarely been investigated, and the underlying mechanism remains largely unknown. Here, we conducted a field experiment to investigate the rice (Oryza sativa L. cv. IIyou) response to TiO2 nanoparticles (nano-TiO2, 0 and 200 mg kg-1) using a free-air CO2 enrichment system with different CO2 levels (ambient ∼370 µmol mol-1 and elevated ∼570 µmol mol-1). The results showed that elevated CO2 or nano-TiO2 alone did not significantly affect rice chlorophyll content and antioxidant enzyme activities. However, in the presence of nano-TiO2, elevated CO2 significantly enhanced the rice height, shoot biomass, and panicle biomass (by 9.4%, 12.8%, and 15.8%, respectively). Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes involved in photosynthesis were up-regulated while most genes associated with secondary metabolite biosynthesis were down-regulated in combination-treated rice. This indicated that elevated CO2 and nano-TiO2 might stimulate rice growth by adjusting resource allocation between photosynthesis and metabolism. This study provides novel insights into rice responses to increasing contamination under climate change.


Asunto(s)
Nanopartículas , Oryza , Dióxido de Carbono , Nitrógeno , Fotosíntesis , Transcriptoma
9.
Environ Sci Technol ; 52(14): 8016-8026, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29898596

RESUMEN

Due to their well-known antifungal activity, the intentional use of silver nanoparticles (AgNPs) as sustainable nanofungicides is expected to increase in agriculture. However, the impacts of AgNPs on plants must be critically evaluated to guarantee their safe use in food production. In this study, 4-week-old cucumber ( Cucumis sativus) plants received a foliar application of AgNPs (4 or 40 mg/plant) or Ag+ (0.04 or 0.4 mg/plant) for 7 days. Gas chromatography-mass spectrometry (GC-MS)=based nontarget metabolomics enabled the identification and quantification of 268 metabolites in cucumber leaves. Multivariate analysis revealed that all the treatments significantly altered the metabolite profile. Exposure to AgNPs resulted in metabolic reprogramming, including activation of antioxidant defense systems (upregulation of phenolic compounds) and downregulation of photosynthesis (upregulation of phytol). Additionally, AgNPs enhanced respiration (upregulation of tricarboxylic acid cycle intermediates), inhibited photorespiration (downregulation of glycine/serine ratio), altered membrane properties (upregulation of pentadecanoic and arachidonic acids, downregulation of linoleic and linolenic acids), and reduced inorganic nitrogen fixation (downregulation of glutamine and asparagine). Although Ag ions induced some of the same metabolic changes, alterations in the levels of carbazole, lactulose, raffinose, citraconic acid, lactamide, acetanilide, and p-benzoquinone were AgNP-specific. The results of this study offer new insight into the molecular mechanisms by which cucumber responds to AgNP exposure and provide important information to support the sustainable use of AgNPs in agriculture.


Asunto(s)
Cucumis sativus , Nanopartículas del Metal , Iones , Metabolómica , Estrés Oxidativo , Plata
10.
Environ Sci Technol ; 49(19): 11884-93, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26368651

RESUMEN

Interactions of nCeO2 with plants have been mostly evaluated at seedling stage and under controlled conditions. In this study, the effects of nCeO2 at 0 (control), 100 (low), and 400 (high) mg/kg were monitored for the entire life cycle (about 7 months) of wheat plants grown in a field lysimeter. Results showed that at high concentration nCeO2 decreased the chlorophyll content and increased catalase and superoxide dismutase activities, compared with control. Both concentrations changed root and leaf cell microstructures by agglomerating chromatin in nuclei, delaying flowering by 1 week, and reduced the size of starch grains in endosperm. Exposed to low concentration produced embryos with larger vacuoles, while exposure to high concentration reduced number of vacuoles, compared with control. There were no effects on the final biomass and yield, Ce concentration in shoots, as well as sugar and starch contents in grains, but grain protein increased by 24.8% and 32.6% at 100 and 400 mg/kg, respectively. Results suggest that more field life cycle studies are needed in order to better understand the effects of nCeO2 in crop plants.


Asunto(s)
Cerio/toxicidad , Nanopartículas/toxicidad , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Antioxidantes/metabolismo , Biomasa , Catalasa/metabolismo , Clorofila/metabolismo , Grano Comestible/efectos de los fármacos , Grano Comestible/metabolismo , Orgánulos/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/ultraestructura , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Plantones/efectos de los fármacos , Plantones/ultraestructura , Suelo , Espectrometría por Rayos X , Almidón/metabolismo , Triticum/metabolismo , Triticum/ultraestructura
11.
Plant Physiol Biochem ; 215: 109044, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39178801

RESUMEN

There has been a growing concern over soil cadmium (Cd) pollution, underscoring the importance of finding effective remediation strategies. Willow trees have emerged as promising candidates for phytoremediation of Cd-contaminated soils. Nevertheless, the specific potential of a novel willow genotype, NJU513, in remediating Cd-polluted soil remains unexplored. Hence, the primary objectives of this study were twofold: firstly, to ascertain the suitability of the willow genotype NJU513 for remediating Cd-contaminated soil; and secondly, to elevate its remediation efficciency with the application of epibrassinolide (Brs). In the pot-culture experiment without Brs, its leaf and stem Cd concentrations were 203 mg kg-1 and 65.1 mg kg-1, with a bioaccumulation factor (BCF) of 20.8 and 6.68, respectively. In the pot-culture experiment with Brs, the corresponding Cd concentrations were 226 mg kg-1 and 59.2 mg kg-1, with a BCF of 23.1 and 6.06, respectively. In addition, the extracted Cd contents were higher in the Brs treatments (1.11-1.37 mg plant-1) than in the no-Brs treatments (0.78-0.96 mg plant-1) because Brs increased the plant biomass and leaf BCF. The mechanism underlying the Cd accumulation of NJU513 leaves with and without Brs was revealed by a transcriptome analysis. The expression levels of genes related to metal ion binding, channel activity, and transporters in leaves were up-regulated, which contributed to the high Cd accumulation and stress tolerance. Analyses of soil metabolites and bacteria in the presence and absence of Brs spraying on willow leaves indicated that soil organic compounds with carboxyl and amino groups may induce Cd activation and passivation, respectively. This study provides valuable insights for developing woody plant varieties that can be used for remediating Cd-contaminated soil.

12.
Phys Med Biol ; 69(15)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38942004

RESUMEN

Reducing the radiation dose leads to the x-ray computed tomography (CT) images suffering from heavy noise and artifacts, which inevitably interferes with the subsequent clinic diagnostic and analysis. Leading works have explored diffusion models for low-dose CT imaging to avoid the structure degeneration and blurring effects of previous deep denoising models. However, most of them always begin their generative processes with Gaussian noise, which has little or no structure priors of the clean data distribution, thereby leading to long-time inference and unpleasant reconstruction quality. To alleviate these problems, this paper presents a Structure-Aware Diffusion model (SAD), an end-to-end self-guided learning framework for high-fidelity CT image reconstruction. First, SAD builds a nonlinear diffusion bridge between clean and degraded data distributions, which could directly learn the implicit physical degradation prior from observed measurements. Second, SAD integrates the prompt learning mechanism and implicit neural representation into the diffusion process, where rich and diverse structure representations extracted by degraded inputs are exploited as prompts, which provides global and local structure priors, to guide CT image reconstruction. Finally, we devise an efficient self-guided diffusion architecture using an iterative updated strategy, which further refines structural prompts during each generative step to drive finer image reconstruction. Extensive experiments on AAPM-Mayo and LoDoPaB-CT datasets demonstrate that our SAD could achieve superior performance in terms of noise removal, structure preservation, and blind-dose generalization, with few generative steps, even one step only.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Dosis de Radiación , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Difusión , Humanos
13.
Aquat Toxicol ; 272: 106967, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833998

RESUMEN

Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.


Asunto(s)
Disponibilidad Biológica , Cobre , Microcystis , Microplásticos , Politetrafluoroetileno , Contaminantes Químicos del Agua , Microcystis/efectos de los fármacos , Cobre/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Politetrafluoroetileno/química , Politetrafluoroetileno/toxicidad , Rayos Ultravioleta , Adsorción , Microalgas/efectos de los fármacos
14.
Environ Pollut ; 351: 124042, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38679128

RESUMEN

Chlorinated hydrocarbons (CHs) pose significant health risks due to their suspected carcinogenicity, necessitating urgent remediation efforts. While the combination of zero-valent iron (Fe0) and microbial action shows promise in mitigating CH contamination, field studies on this approach are scarce. We devised a novel three-layer permeable reactive barrier (PRB) material incorporating Fe0 and coconut shell biochar, effectively implemented at a typical CH-contaminated site. Field monitoring data revealed conducive conditions for reductive dechlorination of CHs, characterized by low oxygen levels and a relatively neutral pH in the groundwater. The engineered PRB material consistently released organic carbon and iron, fostering the proliferation of CH-dechlorinating bacteria. Over a 250-day operational period, the pilot-scale PRB demonstrated remarkable efficacy in CH removal, achieving removal efficiencies ranging from 21.9% to 99.6% for various CH compounds. Initially, CHs were predominantly eliminated through adsorption and iron-mediated reductive dechlorination. However, microbial reductive dechlorination emerged as the predominant mechanism for sustained and long-term CHs removal. These findings underscore the economic viability and effectiveness of our approach in treating CH-contaminated groundwater, offering promising prospects for broader application in environmental remediation efforts.


Asunto(s)
Agua Subterránea , Hidrocarburos Clorados , Contaminantes Químicos del Agua , Agua Subterránea/química , Hidrocarburos Clorados/química , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Hierro/química , Carbón Orgánico/química
15.
Quant Imaging Med Surg ; 14(8): 5571-5590, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144020

RESUMEN

Background: Low-dose computed tomography (LDCT) is a diagnostic imaging technique designed to minimize radiation exposure to the patient. However, this reduction in radiation may compromise computed tomography (CT) image quality, adversely impacting clinical diagnoses. Various advanced LDCT methods have emerged to mitigate this challenge, relying on well-matched LDCT and normal-dose CT (NDCT) image pairs for training. Nevertheless, these methods often face difficulties in distinguishing image details from nonuniformly distributed noise, limiting their denoising efficacy. Additionally, acquiring suitably paired datasets in the medical domain poses challenges, further constraining their applicability. Hence, the objective of this study was to develop an innovative denoising framework for LDCT images employing unpaired data. Methods: In this paper, we propose a LDCT denoising network (DNCNN) that alleviates the need for aligning LDCT and NDCT images. Our approach employs generative adversarial networks (GANs) to learn and model the noise present in LDCT images, establishing a mapping from the pseudo-LDCT to the actual NDCT domain without the need for paired CT images. Results: Within the domain of weakly supervised methods, our proposed model exhibited superior objective metrics on the simulated dataset when compared to CycleGAN and selective kernel-based cycle-consistent GAN (SKFCycleGAN): the peak signal-to-noise ratio (PSNR) was 43.9441, the structural similarity index measure (SSIM) was 0.9660, and the visual information fidelity (VIF) was 0.7707. In the clinical dataset, we conducted a visual effect analysis by observing various tissues through different observation windows. Our proposed method achieved a no-reference structural sharpness (NRSS) value of 0.6171, which was closest to that of the NDCT images (NRSS =0.6049), demonstrating its superiority over other denoising techniques in preserving details, maintaining structural integrity, and enhancing edge contrast. Conclusions: Through extensive experiments on both simulated and clinical datasets, we demonstrated the superior efficacy of our proposed method in terms of denoising quality and quantity. Our method exhibits superiority over both supervised techniques, including block-matching and 3D filtering (BM3D), residual encoder-decoder convolutional neural network (RED-CNN), and Wasserstein generative adversarial network-VGG (WGAN-VGG), and over weakly supervised approaches, including CycleGAN and SKFCycleGAN.

16.
Chemosphere ; 364: 143113, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151580

RESUMEN

Cadmium (Cd) contamination in agricultural soil is a major global concern among the multitude of human health and food security. Zinc oxide nanoparticles (ZnO-NPs) and plant growth promoting rhizobacteria (PGPR) have been known to combat heavy metal toxicity in crops. Herein, the study intended to explore the interactive effect of treatments mediated by inoculation of PGPR and foliar applied ZnO-NPs to alleviate Cd induced phytotoxicity in wheat plants which is rarely investigated. For this purpose, TaEIL1 expression, morpho-physiological, and biochemical traits of wheat were examined. Our results revealed that Cd reduced growth and biomass, disrupted plant physiological and biochemical traits, and further expression patterns of TaEIL1. The foliar application of ZnO-NPs improved growth attributes, photosynthetic pigments, and gas exchange parameters in a dose-additive manner, and this effect was further amplified with a combination of PGPR. The combined application of ZnO-NPs (100 mg L-1) with PGPR considerably increased the catalase (CAT; 52.4%), peroxidase (POD; 57.4%), superoxide dismutase (SOD; 60.1%), ascorbate peroxidase (APX; 47.4%), leading to decreased malondialdehyde (MDA; 47.4%), hydrogen peroxide (H2O2; 38.2%) and electrolyte leakage (EL; 47.3%) under high Cd (20 mg kg-1) stress. Furthermore, results revealed a significant reduction in roots (56.3%), shoots (49.4%), and grains (59.4%) Cd concentration after the Combined treatment of ZnO-NPs and PGPR as compared to the control. Relative expression of TaEIL1 (two homologues) was evaluated under control (Cd 0), Cd, ZnO-NPs, PGPR, and combined treatments. Expression profiling revealed a differential expression pattern of TaEIL1 under different treatments. The expression pattern of TaEIL1 genes was upregulated under Cd stress but downregulated under combined ZnO-NPs and PGPR, revealing its crucial role in Cd stress tolerance. Inferentially, ZnO-NPs and PGPR showed significant potential to alleviate Cd toxicity in wheat by modulating the antioxidant defense system and TaEIL1 expression. By inhibiting Cd uptake, and facilitating their detoxification, this innovative approach ensures food safety and security.

17.
Environ Pollut ; 352: 124095, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703984

RESUMEN

Elevated CO2 levels and methylmercury (MeHg) pollution are important environmental issues faced across the globe. However, the impact of elevated CO2 on MeHg production and its biological utilization remains to be fully understood, particularly in realistic complex systems with biotic interactions. Here, a complete paddy wetland microcosm, namely, the rice-fish-snail co-culture system, was constructed to investigate the impacts of elevated CO2 (600 ppm) on MeHg formation, bioaccumulation, and possible health risks, in multiple environmental and biological media. The results revealed that elevated CO2 significantly increased MeHg concentrations in the overlying water, periphyton, snails and fish, by 135.5%, 66.9%, 45.5%, and 52.1%, respectively. A high MeHg concentration in periphyton, the main diet of snails and fish, was the key factor influencing the enhanced MeHg in aquatic products. Furthermore, elevated CO2 alleviated the carbon limitation in the overlying water and proliferated green algae, with subsequent changes in physico-chemical properties and nutrient concentrations in the overlying water. More algal-derived organic matter promoted an enriched abundance of Archaea-hgcA and Deltaproteobacteria-hgcA genes. This consequently increased the MeHg in the overlying water and food chain. However, MeHg concentrations in rice and soil did not increase under elevated CO2, nor did hgcA gene abundance in soil. The results reveal that elevated CO2 exacerbated the risk of MeHg intake from aquatic products in paddy wetland, indicating an intensified MeHg threat under future elevated CO2 levels.


Asunto(s)
Dióxido de Carbono , Peces , Compuestos de Metilmercurio , Oryza , Contaminantes Químicos del Agua , Humedales , Compuestos de Metilmercurio/análisis , Dióxido de Carbono/análisis , Peces/metabolismo , Animales , Oryza/metabolismo , Oryza/química , Contaminantes Químicos del Agua/análisis , Cadena Alimentaria , Ecosistema , Monitoreo del Ambiente , Caracoles/efectos de los fármacos , Caracoles/metabolismo
18.
Environ Sci Technol ; 47(16): 9167-74, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23899302

RESUMEN

Flame-retardant polybrominated diphenyl ethers (PBDEs) are environmental contaminants. Deca-BDE is increasingly used commercially, but little is known about the long-term fate and impact of its major component, decabromodiphenyl ether (BDE-209), on the soil environment. In this study, we investigated the fate and ecological effect of BDE-209 over 4 years in outdoor lysimeters in a field planted with a rice-wheat rotation. BDE-209 and six lower-brominated PBDEs (BDE-28, -47, -99, -153, -154, and -183) were detected in soil layers of the test lysimeter. We calculated an average BDE-209 migration rate of 1.54 mg·m(-2)·yr(-1). In samples collected in May 2008, November 2008, November 2009, November 2010, and November 2011, 95.5%, 94.3%, 108.1%, 33.8%, and 35.5% of the spiked BDE-209 were recovered, respectively. We predicted the major pathway for debromination of BDE-209 in soil to be: BDE-209→BDE-183→BDE-153/BDE-154→BDE-99→BDE-47→BDE-28. In plants, BDE-209 and seven lower-brominated PBDEs (BDE-28, -47, -99, -100, -153, -154, and -183) were detected. BDE-100 was mainly derived from the debromination of BDE-154 in plants, but sources of other lower-brominated PBDEs were still difficult to determine. In soils containing BDE-209 for 4 years, soil urease activity increased, and soil protease activity slightly decreased. Our results provide important insights for understanding the behavior of BDE-209 in agricultural soils.


Asunto(s)
Éteres Difenilos Halogenados/química , Contaminantes del Suelo/química , Ciclo del Carbono , Enzimas/análisis , Éteres Difenilos Halogenados/metabolismo , Ciclo del Nitrógeno , Oryza/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Triticum/metabolismo
19.
Sci Total Environ ; 854: 158471, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36063946

RESUMEN

Cadmium contamination in agricultural soils threatens food security and human health, and that has caused widespread concern worldwide. Willow and alfalfa are widely used for the phytoremediation of cadmium (Cd)-contaminated soil, and willow NJU513 is the promising plant for remediating Cd-contaminated soil. In order to discuss the effect of intercropping willow NJU513 with alfalfa on the phytoremediation of Cd-contaminated soil, a pot-culture experiment was conducted in the greenhouse. The result showed that the phytoremediation of Cd-contaminated soil was enhanced by this intercropping because of the 25.90 % increase in the available Cd content. In order to increase the phytoremediation efficiency of Cd in the intercropping treatment, a 24-epibrassinolide (Brs) treatment was designed in the current study. The results showed that the phytoremediation of Cd-contaminated soil by willow and alfalfa improved following a Brs treatment because of the 16.32-74.15 % and 16.91-44.48 % increases in the plant biomass and available Cd content, respectively. Additionally, the extracted Cd by plants in the intercropping treatments with and without Brs was 0.56 and 0.31 mg pot-1, respectively. Transcriptome analyses of willow leaves revealed that Brs up-regulated the expression of genes related to calcium channel activity, calcium and zinc transmembrane transport, photosynthesis, catalase/antioxidant activity, glutathione metabolic processes and detoxification, phagosomes, and vacuoles, and that these upregulated genes promoted plant remediation efficiency and resistance to Cd stress. Brs promoted the phosphate ion transporter activity in willow leaves, which may have enhanced the solubilization of insoluble phosphate minerals by bacterial species (e.g., Vicinamibacterales, Bacillus, and Gaiella) to release Cd, ultimately leading to increased phytoremediation efficiency. In addition, plants with and without Brs treatments induced the bacteria-mediated transformation of available Cd to stable Cd. The study findings may be useful for improving the phytoremediation of Cd-contaminated paddy soil.


Asunto(s)
Salix , Contaminantes del Suelo , Humanos , Cadmio/análisis , Biodegradación Ambiental , Medicago sativa/metabolismo , Salix/metabolismo , Antioxidantes/metabolismo , Suelo , Fosfatos/análisis , Contaminantes del Suelo/análisis
20.
Sci Total Environ ; 882: 163608, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37087009

RESUMEN

Microplastic (MP) pollution in aquatic systems has attracted increasing attention in recent years. MPs will inevitably encounter aging process in the environment. However, research on the effects of aged MPs on freshwater ecosystems remains limited. This study compared the properties of pristine and aged polystyrene (PS) MPs of different sizes (20 nm, 200 nm, 2000 nm) and determined the effects of aging on the toxicity of PS MPs to typical freshwater cyanobacteria, Microcystis aeruginosa. Aging process induced significant changes to the properties of the MPs, especially their microstructures and surface functional groups. Aging process also influenced zeta potential, which could further affect stability and toxicity of PS MPs. After 96 h exposure, increase of algal growth and photosynthetic activity was observed in the treatment of pristine 200 nm, aged 20 nm and aged 200 nm PS MPs. In addition, pristine 20 nm, pristine 200 nm, pristine 2000 nm, aged 20 nm and aged 200 nm PS MPs were adsorbed on algal cell surface, which could influence the cell permeability. Pristine PS MPs promoted microcystin synthesis and release, which could do harm to drinking water safety and freshwater ecosystems. However, there was no significant increase in aged PS MPs treatments. Furthermore, the increased 13C content of algal cells in all pristine PS MPs treatments indicated that M. aeruginosa assimilated more CO2 and generate more energy to resist the stress of pristine PS MPs when compared with aged PS MPs. These results indicate that aging process did not necessarily enhance the toxicity and biological risk of PS MPs to freshwater ecosystems. Findings of this study fill the knowledge gap in understanding the effects and risks of aged MPs on freshwater ecosystems.


Asunto(s)
Microcystis , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Poliestirenos/toxicidad , Plásticos/toxicidad , Ecosistema , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda