Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biomed Microdevices ; 26(3): 30, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913209

RESUMEN

Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.


Asunto(s)
Metales Pesados , Metales Pesados/análisis , Agua/química , Electrónica , Contaminantes Químicos del Agua/análisis , Iones/química , Iones/análisis
2.
J Environ Manage ; 356: 120648, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508012

RESUMEN

Profound worldwide fleet electrification is thought to be the primary route for achieving the target of carbon neutrality. However, when and how electrification can help mitigate environmental impacts and carbon emissions in the transport sector remains unclear. Herein, the overall life-cycle environmental impacts and carbon saving range of two typical A-class vehicles in China, including electric vehicle (EV) and internal combustion engine vehicle (ICEV), were quantified by the life cycle assessment model for endpoint damage with localization parameters. The results showed that the EV outperformed the ICEV for the total environment impact after a travel distance of 39,153 km and for carbon emissions after 32,292 km. The ICEV was more carbon-friendly only when the driving distance was less than 3229 km/a. Considering a full lifespan travel distance of 150,000 km, the whole life-cycle average environmental impacts of EV and ICEV were calculated as 8.6 and 17.5 mPt/km, respectively, but the EV had 2.3 times higher impacts than the ICEV in the production phase. In addition, the EV unit carbon emission was 140 g/km, 46.8% lower than that of the ICEV. Finally, three potential reduction scenarios were considered: cleaner power mix, energy efficiency improvement and composite scenario. These scenarios contributed 19.1%, 13.0% and 32.1% reductions, respectively. However, achieving carbon peak and neutrality goals in China remains a great challenge unless fossil fuels are replaced by renewable energy. The research can provide scientific reference for the method and practice of emission reduction link identification, eco-driving choice and emission reduction path formulation.


Asunto(s)
Carbono , Objetivos , China , Transportes , Emisiones de Vehículos/análisis , Vehículos a Motor
3.
J Environ Manage ; 338: 117675, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989951

RESUMEN

Solar photovoltaics (PV) is one of the most promising renewable energy sources for climate change mitigation. However, not all green energy installations may not continue to be sustainable after their service life. With the largest installed solar capacity in the world, China is expected to face significant challenges in managing the end-of-life (EoL) PV panels in the coming decades, which have not been well addressed yet.Further, the massive deployment and planning of solar energy systems in China has led to a dramatic increases in demand for raw materials, which places more pressure on the available resources. In this study, we have developed a dynamic, technology-based material flow analysis model to clarify the stock, flow and secondary supply potential of waste PV panel materials in China from 2000 to 2050. The waste generation and circular flow characteristics of the component materials in PV panels are comprehensively investigated, which set important boundary conditions for the recovery and recycling of key materials. The results show that approximately 134 million metric tons (Mt) and 72 Mt of waste PV panels will be cumulatively generated in China up to 2050 under the early loss and regular loss scenarios, respectively. Polysilicon glass accounts for the largest share of PV waste, nearly 64% by weight, followed by aluminum (16%) and steel (11%). Precious metals such as Ag, Ga, In, and Te, account for less than 1% of the total PV waste, but can provide considerable economic benefits if recycled wisely. The potential of secondary resources from PV waste may reduce the supply pressure on the natural materials to some extent, but they could not fully mitigate the material supply resks. We suggest that stakeholders in the solar energy industry should take urgent actions, including recycling technology innovations, effective collection systems and incentive measures, to address the growing challenge of waste PV panels in China.


Asunto(s)
Residuos Electrónicos , Energía Solar , Administración de Residuos , Residuos Electrónicos/análisis , Metales , Aluminio , Residuos , Reciclaje , China , Administración de Residuos/métodos
4.
J Environ Manage ; 318: 115501, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35717691

RESUMEN

The sorting of Construction and Demolition (C&D) waste is a critical step to linking the recycling system and to the macro prediction, which helps to promote the development of the circular economy. Moreover, the effective classification and automated separation process will also help to stop the spreading of pathogenic organisms, such as virus and bacteria, by minimizing human intervention in the sorting process, while also helping to prevent further contamination by COVID-19 virus. This study aims to develop an efficient method to sort C&D waste through deep learning combined with knowledge transfer approach. In this paper, CVGGNet models, that is four VGG structures (VGGNet-11, VGGNet-13, VGGNet-16, and VGGNet-19), based on knowledge transfer combined with the technology of data augmentation and cyclical learning rate, are proposed to classify ten types of C&D waste images. Results show that 2.5 × 10-4, 1.8 × 10-4, 0.8 × 10-4, and 1.0 × 10-4 are the optimum learning rate for CVGGNet-11, CVGGNet-13, CVGGNet-16, and CVGGNet-19, respectively. Knowledge transfer helped shorten the training time from 1039.45 s to 991.05 s, and while it improved the performance of the CVGGNet-11 model in training, validation, and test datasets. The average training time increases as the number of the layers in the CVGGNet architecture rises: CVGGNet-11 (991.05 s) ˂ CVGGNet-13 (1025.76 s) ˂ CVGGNet-16 (1090.48 s) ˂ CVGGNet-19 (1337.81 s). Compared to other CVGGNet models, CVGGNet-16 showed an excellent performance in various C&D waste types, in terms of accuracy (76.6%), weighted average precision (76.8%), weighted average recall (76.6%), weighted average F1-score (76.6%) and micro average ROC (87.0%). In addition, the t-distributed Stochastic Neighbor Embedding (t-SNE) approach can reduce the dataset to a lower dimension and distinctly separate each type of C&D waste. This study demonstrates the good performance of CVGGNet models that can be used to automatically sort most of the C&D waste, paving the way for better C&D waste management.


Asunto(s)
COVID-19 , Administración de Residuos , Humanos , Redes Neurales de la Computación , Reciclaje
5.
Environ Sci Technol ; 53(8): 4128-4139, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30865821

RESUMEN

The rapid urbanization in China since the 1970s has led to an exponential growth of metal stocks (MS) in use in cities. A retrospect on the quantity, quality, and patterns of these MS is a prerequisite for projecting future metal demand, identifying urban mining potentials of metals, and informing sustainable urbanization strategies. Here, we deployed a bottom-up stock accounting method to estimate stocks of iron, copper, and aluminum embodied in 51 categories of products and infrastructure across 10 Chinese megacities from 1980 to 2016. We found that the MS in Chinese megacities had reached a level of 2.6-6.3 t/cap (on average 3.7 t/cap for iron, 58 kg/cap for copper, and 151 kg/cap for aluminum) in 2016, which still remained behind the level of western cities or potential saturation level on the country level (e.g., approximately 13 t/cap for iron). Economic development was identified as the most powerful driver for MS growth based on an IPAT decomposition analysis, indicating further increase in MS as China's urbanization and economic growth continues in the next decades. The latecomer cities should therefore explore a wide range of strategies, from urban planning to economy structure to regulations, for a transition toward more "metal-efficient" urbanization pathways.


Asunto(s)
Desarrollo Económico , Urbanización , China , Ciudades , Metales , Población Urbana
6.
J Environ Sci (China) ; 75: 98-104, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30473311

RESUMEN

Electrolysis is a promising technology to improve sludge dewaterability efficiently with negligible environmental impact. To intensify the electrolytic efficiency, the effect of electrolytes (NaCl, Na2SO4, NaNO3, and NaClO4) on electrolysis pretreatment of municipal sludge and its mechanisms was investigated using Ti/PbO2 electrodes. The electrolytes, which enhanced the production of oxidative radicals, showed a significant synergetic effect in reducing the capillary suction time (CST) of sludge. NaCl was distinguished from the other electrolytes since it formed a large amount of active chlorine species, which oxidized the sludge cells to improve the sludge dewaterability. The surface morphologies as well as the soluble proteins and polysaccharides were analyzed to unravel the underlying mechanisms of sludge dewaterability. Additionally, an economic assessment showed that NaCl addition in the electrolysis pretreatment can be a suitable technique for enhancing municipal sludge dewaterability.


Asunto(s)
Desecación/métodos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Electrodos , Electrólisis , Agua
7.
Environ Sci Technol ; 52(11): 6350-6356, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29733640

RESUMEN

The global community has responded to the dual threats of ozone depletion and climate change from refrigerant emissions (e.g., chlorofluorocarbons, CFCs, and hydrofluorocarbons, HFCs) in refrigerators and air conditioners (RACs) by agreeing to phase out the production of the most damaging chemicals and replacing them with substitutes. Since these refrigerants are "banked" in products during their service life, they will continue to impact our environment for decades to come if they are released due to mismanagement at the end of life. Addressing such long-term impacts of refrigerants requires a dynamic understanding of the RACs' life cycle, which was largely overlooked in previous studies. Based on field surveys and a dynamic model, we reveal the lingering ozone depletion potential (ODP) and significant global warming potential (GWP) of scrap refrigerants in China, the world's largest producer (62%) and consumer (46%) of RACs in 2015, which comes almost entirely from air conditioners rather than refrigerators. If the use and waste management of RACs continue with the current trend, the total GWP of scrap refrigerants in China will peak by 2025 at a level of 135.2 ± 18.9 Mt CO2e (equal to approximately 1.2% ± 0.2% of China's total greenhouse gas emissions or the national total of either The Netherlands and Czech Republic in 2015). Our results imply an urgent need for improving the recycling and waste management of RACs in China.


Asunto(s)
Contaminantes Atmosféricos , Cambio Climático , China , República Checa , Países Bajos
9.
J Environ Manage ; 199: 21-30, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28525808

RESUMEN

Hazardous Materials Incidents (HMIs) have attracted a growing public concern worldwide. The health risks and environmental implications associated with HMIs are almost invariably severe, and underscore the urgency for sound management. Hazardous Materials Explosion incidents (HMEIs) belong to a category of extremely serious HMIs. Existing studies placed focuses predominately on the promptness and efficiency of emergency responses to HMIs and HMEIs. By contrast, post-disaster environmental management has been largely overlooked. Very few studies attempted to examine the post-disaster environmental management plan particularly its effectiveness and sufficiency. In the event of the Tianjin warehouse explosion (TWE), apart from the immediate emergency response, the post-disaster environmental management systems (P-EMSs) have been reported to be effective and sufficient in dealing with the environmental concerns. Therefore, this study aims to critically investigate the P-EMSs for the TWE, and consequently to propose a framework and procedures for P-EMSs in general for HMIs, particularly for HMEIs. These findings provide a useful reference to develop P-EMSs for HMIs in the future, not only in China but also other countries.


Asunto(s)
Planificación en Desastres , Explosiones , Sustancias Peligrosas , China , Desastres
10.
Langmuir ; 32(44): 11485-11491, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27755878

RESUMEN

The adsorption process of a geminized amphiphilic polyelectrolyte, comprising double elementary charges and double hydrophobic tails in each repeat unit (denoted as PAGC8), was investigated and characterized by means of quartz crystal microbalance with dissipation (QCM-D), ellipsometry, and atomic force microscopy (AFM). By comparison, the self-assembly behaviors of a traditional polyelectrolyte without hydrophobic chains (denoted as PASC1) and an amphiphilic polyelectrolyte with a single hydrophilic headgroup and hydrophobic tail in each repeat unit (denoted as PASC8) at the solid/liquid interface were also investigated in parallel. A two-regime buildup was found in both amphiphilic systems of PASC8 and PAGC8, where the first regime was dependent on electrostatic interactions between polyelectrolytes and oppositely charged substrates, and the rearrangements of the preadsorbed chains and their aggregation behaviors on surface dominated the second regime. Furthermore, it was found that the adsorbed amount and conformation changed as a function of the charge density and bulk concentrations of the polyelectrolytes. The comparison of the adsorbed mass obtained from QCM-D and ellipsometry allowed calculating the coupling water content which reached high values and indicated a flexible aggregate conformation in the presence of PAGC8, resulting in controlling the suspension stability even at an extremely low concentration. In order to provide an insight into the mechanism of the suspension stability of colloidal dispersions, we gave a further explanation with respect to the interactions between surfaces in the presence of the geminized polyelectrolyte.

11.
Environ Sci Technol ; 50(11): 5711-9, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27134153

RESUMEN

This paper describes the scope, methods, data, and results of a comprehensive quantitative analysis of generation, stock, and collection of used computers and monitors in the United States , specifically desktops, laptops, CRT monitors, and flat panel monitors in the decade leading up to 2010. Generation refers to used electronics coming directly out of use or postuse storage destined for disposal or collection, which encompasses a variety of organizations gathering used electronics for recycling or reuse. Given the lack of actual statistics on flows of used electronics, two separate approaches, the sales obsolescence method (SOM) and the survey scale-up method (SSUM), were used in order to compare the results attained and provide a range for estimated quantities. This study intentionally sought to capture the uncertainty in the estimates. To do so, uncertainty in each data set was incorporated at each stage using Monte Carlo simulations for SOM and establishing scenarios for SSUM. Considering the average results across both methods, we estimate that in 2010 the U.S. generated 130-164 thousand metric tons of used computers and 128-153 thousand tons of used monitors, of which 110-116 thousand tons of used computers and 105-106 thousand tons of used monitors were collected for further reuse, recycling, or export. While each approach has its strengths and weaknesses, both the SOM and the SSUM appear to be capable of producing reasonable ranges of estimates for the generation and collection of used electronics.


Asunto(s)
Electrónica , Eliminación de Residuos , Computadores , Microcomputadores , Reciclaje , Estados Unidos
12.
Environ Sci Technol ; 48(6): 3263-71, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24527867

RESUMEN

There is limited convincing quantitative data on the export of used electronics from the United States (U.S.). Thus, we advance a methodology to quantify the export flows of whole units of used electronics from the U.S. using detailed export trade data, and demonstrate the methodology using laptops. Since used electronics are not explicitly identified in export trade data, we hypothesize that exports with a low unit value below a used-new threshold specific to a destination world region are used. The importance of using the most disaggregated trade data set available when resolving used and new goods is illustrated. Two detailed U.S. export trade data sets were combined to arrive at quantities and unit values for each port, mode of transport, month, trade partner country, and trade code. We add rigor to the determination of the used-new threshold by utilizing both the Neighborhood valley-emphasis method (NVEM) and published sales prices. This analysis found that 748 to 1199 thousand units of used laptops were exported from the U.S. in 2010, of which 78-81% are destined for non-OECD countries. Asia was found to be the largest destination of used laptop exports across all used-new threshold methods. Latin American and the Caribbean was the second largest recipient of these exports. North America and Europe also received used laptops from the U.S. Only a small fraction of used laptops was exported to Africa. However, these quantities are lower bound estimates because not all shipments of used laptops may be shipped using the proper laptop trade code. Still, this approach has the potential to give insight into the quantity and destinations of the exports if applied to all used electronics product types across a series of years.


Asunto(s)
Residuos Electrónicos , Electrónica , Monitoreo del Ambiente/métodos , Microcomputadores , Eliminación de Residuos/estadística & datos numéricos , África , Asia , Región del Caribe , Gráficos por Computador , Europa (Continente) , Estados Unidos
13.
Sci Total Environ ; 924: 171453, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38453089

RESUMEN

Recycling e-waste is seen as a sustainable alternative to compensate for the limited natural rare earth elements (REEs) resources and the difficulty of accessing these resources. Recycling facilitates the recovery of valuable products and minimizes emissions during their transportation. Numerous studies have been reported on e-waste recycling using various techniques, including thermo-, hydro- and biometallurgical approaches. However, each approach still has technical, economic, social, or environmental limitations. This review highlights the potential of recycling e-waste, including outlining the current unutilized potential of REE recycling from different e-waste components. An in-depth analysis of e-waste generation on a global scale and Australian scenario, along with various hazardous impacts on ecosystem and human health, is reported. In addition, a comprehensive summary of various metal recovery processes and their merits and demerits is also presented. Lifecycle analysis for recovering REEs from e-waste indicate a positive environmental impact when compared to REEs produced from virgin sources. In addition, recovering REEs form secondary sources eliminated ca. 1.5 times radioactive waste, as seen in production from primary sources scenario. The review outcome demonstrates the increasing potential of REE recycling to overcome critical challenges, including issues over supply security and localized dependency.

14.
Waste Manag ; 156: 118-129, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462342

RESUMEN

Ventilation is an efficient approach employed for accelerating stabilization and reducing aftercare of landfill, but its effect on leachate reduction is still elusive. To fill this knowledge gap, five lab-scale landfill reactors with different ventilation rates were established in this study. Suitable ventilation (e.g. 0.25-0.5 L·min-1·kg-1 dry solid of waste (DS)) was beneficial to promoting the stabilization of landfill, which effectively accelerated the degradation of organic matter and reduced water content of landfilled waste. Based on the mass balance of water, the dominant input water was initial water of landfilled waste (more than 94 %), which was partially converted to leachate and evaporated water. Ventilation enhanced the intensity of biochemical reactions heat to increase evaporated water content from 0 to 0.29 t/t DS while reducing the leachate generation significantly from 0.69 to 0.49 t/t DS with the increase of ventilation rate. Besides, the hydrophilic substances, such as humic acid-like substances, in landfilled waste increased, and the surface of the landfilled waste converted from smooth to rough. The reduction of the bound water content has a significant correlation with the degradation of organic matter content (p less than 0.05), which reduced the water-holding capacity of waste. Actinobacteriota and Firmicutes were the key bacterial phyla in the degradation of organic matter to promote bio-heat and evaporation of water, thus reducing leachate production under suitable ventilation conditions. Carbohydrates and amino acids were the main energy metabolism sources of bacteria during the landfill process. This study deepens our understanding of the leachate reduction mechanism in the micro-aerobic landfill.


Asunto(s)
Microbiota , Eliminación de Residuos , Contaminantes Químicos del Agua , Aguas Residuales , Agua/química , Reactores Biológicos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Bacterias , Residuos Sólidos/análisis
15.
Sci Total Environ ; 857(Pt 1): 159155, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36206897

RESUMEN

Over the years, the transformation of biomass into a plethora of renewable value-added products has been identified as a promising strategy to fulfil high energy demands, lower greenhouse gas emissions, and exploit under-utilized resources. Techno-economic analysis (TEA) and life-cycle assessment (LCA) are essential to scale up this process while lowering the conversion cost. In this study, trade-offs are made between economic, environmental, and technical indicators produced from these methodologies to better evaluate the commercialization potential of biomass pyrolysis. This research emphasizes the necessity of combining LCA and TEA variables to assess the performance of the early-stage technology and associated constraints. The important findings based on the LCA analysis imply that most of the studies reported in literature focussed on the global warming potentials (GWP) under environmental category by considering greenhouse gases (GHGs) as evaluation parameter, neglecting many other important environmental indices. In addition, the upstream and downstream processes play an important role in understanding the life cycle impacts of a biomass based biorefinery. Under upstream conditions, the use of a specific type of feedstock may influence the LCA conclusions and technical priority. Under downstream conditions, the product utilization as fuels in different energy backgrounds is crucial to the overall impact potentials of the pyrolysis systems. In view of the TEA analysis, investigations towards maximizing the yield of valuable co-products would play an important role in the commercialization of pyrolysis process. However, comprehensive research to compare the conventional, advanced, and emerging approaches of biomass pyrolysis from the economic perspective is currently not available in the literature.


Asunto(s)
Biocombustibles , Pirólisis , Biomasa
16.
Sci Total Environ ; 904: 166883, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690764

RESUMEN

Mature landfill leachate is a refractory organic wastewater, and needs physical and chemical pretreatments contemporaneously, e.g. iron-carbon micro-electrolysis (IC-ME). In this study, a novel iron-carbon (Fe-C) material was synthesized from waste activated sludge to be utilized in IC-ME for landfill leachate treatment. The pyrolysis temperature, mass ratio of iron to carbon, and solid-liquid ratio in leachate treatment were optimized as 900 °C with 1.59 and 34.7 g/L. Under these optimal conditions, the chemical oxygen demand (COD) removal efficiency reached 79.44 %, which was 2.6 times higher than that of commercial Fe-C material (30.1%). This excellent COD removal performance was indicated to a better mesoporous structure, and uniform distribution of zero-valent iron in novel Fe-C material derived from sludge. The contribution order of COD removal in IC-ME treatment for landfill leachate was proven as coagulation, adsorption, and redox effects by a contrast experiment. The removal of COD includes synthetic organic compounds, e.g. carcinogens, pharmaceuticals and personal care products. The contents of CHO, CHON, and CHOS compounds of dissolved organic matter (DOM) in the leachate were decreased, and both the molecular weight and unsaturation of lipids, lignin, and tannic acids concentration were also reduced. Some newly generated small molecular DOM in the treated leachate further confirmed the existence of the redox effect to degrade DOM in leachate. The total cost of sludge-derived Fe-C material was only USD$ 152.8/t, which could save 76% of total compared with that of commercial Fe-C materials. This study expands the prominent source of Fe-C materials with excellent performance, and deepens the understanding of its application for leachate treatment.

17.
Waste Manag ; 171: 676-685, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37866111

RESUMEN

Passive aeration has been proven to be efficient for oxygen supply in landfill. The combination of passive aeration and semi-aerobic landfill offers a cost-effective and energy-efficient approach to solid waste (SW) treatment. However, determining the optimal strategy for this combination has remained unclear. This study aimed to investigate the strategy of passive aeration in a semi-aerobic landfill using numerical simulation methods. A model coupled hydrodynamic model and compartment model for degradation of SW was implemented. The accuracy was well validated by comparing measured and simulated results in a pilot-scale landfill. Compared with natural convection, passive aeration by funnel caps could increase air input by 20 %. By simulating volumetric fraction distribution of CO2, CH4 and O2 in landfill, an orthogonal experiment including 4 factors was designed to identify that the diameter of tubes (DT), the spacing between tubes (ST) and the landfill depth (LD) have substantial impacts on aerobic zone ratio (AZR) of landfill. But the diameter of gas ports (DGP) has an indiscernible effect. The optimized factors were determined to be as follows: DT = 0.3 m, ST = 15.0 m, DGP = 0.05 m, and LD = 4.0 m, under which the semi-aerobic landfill could enhance SW degradation. Large diameter and spacing of tubes are favorable to improve the AZR at the top of the landfill, and the aerobic zone mainly exists near the ventilation tubes. These findings contribute to the development of more efficient and sustainable solid waste treatment strategies in semi-aerobic landfill.

18.
Waste Manag Res ; 30(11): 1187-97, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22851535

RESUMEN

The volume of waste electrical and electronic equipment (WEEE) is growing rapidly worldwide, making its management difficult; therefore, this should be improved as a matter of urgency. WEEE includes both essential household appliances [including televisions, refrigerators, and washing machines; but not air conditioners, where the consumption mode is more like information, communication and technology (ICT)] ICT equipment (also called high-tech household appliances). In the present study, Baoding, a medium-sized, prefecture-level city in north central China with a population of 11 million, including 1.1 million urban residents, was selected as a representative city for an investigation of recycling behaviors. A valid sample size of 346 households in Baoding was investigated, and categorized into various income and educational levels. The results showed that the major reason for discarding WEEE was malfunction of the appliance, accounting for 52% of disposals. Surveyed households with either high income or good education were more likely to consume high-tech household appliances, attracted by advanced technology, versatile functions or flexibility of use. Personal computer ownership rates were highest in households with a high income and good education-1.2 and 0.9 per home respectively. WEEE was most often sold to peddlers or hawkers from where the WEEE flowed into the second-hand market to be refurbished or repaired, and then re-sold. However, 56.3% of residents in the college community were in support of charging consumers for disposal and 61.7% were in support of including a disposal surcharge in the purchase price of new products-a percentage approximately three times that for high-income residents. Thus, high educational level appears to be currently the most important factor in raising the potential of a household's willingness to pay for WEEE treatment cost. The findings of this study can be used to develop sound recycling systems for WEEE in mainland China.


Asunto(s)
Actitud , Residuos Electrónicos/análisis , Artículos Domésticos , Reciclaje/métodos , Eliminación de Residuos/métodos , China , Ciudades , Humanos , Reciclaje/economía , Eliminación de Residuos/economía , Factores Socioeconómicos , Encuestas y Cuestionarios
19.
J Hazard Mater ; 439: 129587, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35863231

RESUMEN

The presence of microplastics (MPs) has been recognized as a significant environmental threat due to adverse effects spanning from molecular level, organism health, ecosystem services to human health and well-being. MPs are complex environmental contaminants as they bind to a wide range of other contaminants. MPs associated contaminants include toxic chemical substances that are used as additives during the plastic manufacturing process and adsorbed contaminants that co-exist with MPs in aquatic environments. With the transfer between the water column and sediments, and the migration within aquatic systems, such contaminants associated MPs potentially pose high risk to aquatic systems. However, only limited research has been undertaken currently to link the environmental risk associated with MPs occurrence and movement behaviour in aquatic systems. Given the significant environmental risk and current knowledge gaps, this review focuses on the role played by the abundance of different MP species in water and sediment compartments as well as provides the context for assessing and quantifying the multiple risks associated with the occurrence and movement behaviour of different MP types. Based on the review of past literature, it is found that the physicochemical properties of MPs influence the release/sorption of other contaminants and current MPs transport modelling studies have primarily focused on virgin plastics rather than aged plastics. Additionally, risk assessment of contaminants-associated MPs needs significantly more research. This paper consolidates the current state-of-the art knowledge on the source to sink movement behaviour of MPs and methodologies for assessing the risk of different MP species. Moreover, knowledge gaps and emerging trends in the field are also identified for future research endeavours.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Anciano , Ecosistema , Monitoreo del Ambiente , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Agua , Contaminantes Químicos del Agua/química
20.
Carbohydr Polym ; 296: 119944, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36087992

RESUMEN

Poly/oligosaccharides are renewable natural resources with abundant chirality. Herein, we develop a general route to prepare optically active particles by using poly/oligosaccharides as both chiral inducers and growth templates. By complexing with Cu(NH3)42+ ions, OH groups on C2 and C3 in poly/oligosaccharides can transfer the chirality to Cu(II) and retain it in CuO. At the same time, poly/oligosaccharides direct growth of CuO by in situ transformation of Cu(NH3)42+ ions. Cellulose nanocrystal (CNC) and starch (ST) are used as representative polysaccharides, and ß-cyclodextrin (ß-CD) as a representative oligosaccharide, thus dandelion, duchesnea, and chrysanthemum-like composite particles with chiroptical activity are obtained. Besides, chiral CuO/poly(oligo)saccharide particles (CSP) demonstrate enantioselective ability by differentiating coordination with tryptophan (Trp) enantiomers and form Cu-Trp metal organic framework architectures with different morphologies. The study provides an easily accessible approach to prepare novel functional materials by poly/oligosaccharide-based chiral induction and hold great promise in chiral applications.


Asunto(s)
Celulosa , beta-Ciclodextrinas , Celulosa/química , Oligosacáridos , Almidón , Estereoisomerismo , Triptófano , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda