Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 58(12): 5598-5605, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466913

RESUMEN

Metal-free carbon-based catalysts are attracting much attention in the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, the mechanism of the NH3-SCR reaction on carbon-based catalysts is still controversial, which severely limits the development of carbon-based SCR catalysts. Herein, we successfully reconstructed carbon-based catalysts through oxidation treatment with nitric acid, thereby enhancing their low-temperature activity in NH3-SCR. Combining experimental results and density functional theory (DFT) calculations, we proposed a previously unreported NH3-SCR reaction mechanism over carbon-based catalysts. We demonstrated that C-OH and C-O-C groups not only effectively activate NH3 but also remarkedly promote the decomposition of intermediate NH2NO. This study enhances the understanding of the NH3-SCR mechanism on carbon-based catalysts and paves the way to develop low-temperature metal-free SCR catalysts.


Asunto(s)
Amoníaco , Carbono , Teoría Funcional de la Densidad , Oxidación-Reducción , Metales , Catálisis
2.
Environ Sci Technol ; 57(45): 17577-17587, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37844285

RESUMEN

Commercial vanadium oxide catalysts exhibit high efficiency for the selective catalytic reduction (SCR) of NO with NH3, especially in the presence of NO2 (i.e., occurrence of fast NH3-SCR). The high-activity sites and their working principle for the fast NH3-SCR reaction, however, remain elusive. Here, by combining in situ spectroscopy, isotopic labeling experiments, and density functional theory (DFT) calculations, we demonstrate that polymeric vanadyl species act as the main active sites in the fast SCR reaction because the coupling effect of the polymeric structure alters the elementary reaction step and effectively avoids the high energy barrier of the rate-determining step over monomeric vanadyl species. This study unveils the high-activity dinuclear mechanism of the NO2-involved SCR reaction over vanadia-based catalysts and provides a fundamental basis for developing high-efficiency and low V2O5-loading SCR catalysts.


Asunto(s)
Dióxido de Nitrógeno , Vanadatos , Amoníaco/química , Óxidos/química , Catálisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda