RESUMEN
The diastereoselective assembly of achiral constituents through a single spontaneous process into complex covalent architectures bearing multiple stereogenic elements still remains a challenge for synthetic chemists. Here, we show that such an extreme level of control can be achieved by implementing stereo-electronic information on synthetic organic building blocks and templates and that non-directional interactions (i.e., electrostatic and steric interactions) can transfer this information to deliver, after self-assembly, high-molecular weight macrocyclic species carrying up to 16 stereogenic elements. Beyond the field of supramolecular chemistry, this proof of concept should stimulate the on-demand production of highly structured polyfunctional architectures.
RESUMEN
An efficient and selective method for the monofunctionalization of p-tert-butylcalix[4]arene is described. A mono-de-O-functionalization of disubstituted p-tert-butylcalix[4]arenes using titanium tetrachloride was developed to synthesize a series of monosubstituted p-tert-butylcalix[4]arenes with the pendant functions being ethoxycarbonylmethyloxy, 3-ethoxycarbonylpropyloxy, cyanomethyloxy, 3-cyanopropyloxy, 4-bromobutyloxy, 3-hydroxypropyloxy, propyloxy, 2-methylpropyloxy, 3-butynyloxy, and 3-cyanopropyloxy groups. The reaction mechanism of the formation of 5,11,17,23-tetra-tert-butyl-26,27,28-trihydroxy-25-(3-ethoxycarbonylpropyloxy) calix[4]arene was studied by (1)H NMR and GC/mass spectroscopy monitoring. Reaction of TiCl4 with the disubstituted p-tert-butylcalix[4]arene produced the corresponding dioxocalix[4]arene titanium dichloride complex, which undergoes elimination of ethyl 4-chlorobutyrate, leading to a trioxocalix[4]arene titanium dichloride complex and to monosubstituted calix[4]arene after hydrolysis. These two complexes were also synthesized, isolated, and fully characterized.