Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996487

RESUMEN

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Asunto(s)
Genoma , Mamuts , Piel , Animales , Mamuts/genética , Genoma/genética , Femenino , Elefantes/genética , Cromatina/genética , Fósiles , ADN Antiguo/análisis , Ratones , Humanos , Cromosoma X/genética
2.
Nature ; 629(8010): 127-135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658750

RESUMEN

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Asunto(s)
Evolución Molecular , Proteínas de Homeodominio , Locomoción , Marsupiales , Factores de Transcripción , Animales , Femenino , Masculino , Ratones , Epigenómica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Genómica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Locomoción/genética , Marsupiales/anatomía & histología , Marsupiales/clasificación , Marsupiales/genética , Marsupiales/crecimiento & desarrollo , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fenotipo , Humanos
3.
Am J Hum Genet ; 109(11): 2049-2067, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36283406

RESUMEN

Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Humanos , Genoma , Haploinsuficiencia , Factores de Transcripción MEF2/genética , Neuronas , Transcripción Genética
4.
PLoS Pathog ; 18(2): e1010288, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35167626

RESUMEN

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.


Asunto(s)
Variación Genética , Genoma de Protozoos , Schistosoma haematobium/genética , Esquistosomiasis Urinaria/parasitología , Transcriptoma , Animales , Cromosomas/parasitología , Genes Protozoarios , Genoma , Estudio de Asociación del Genoma Completo , Análisis de Secuencia de ADN
5.
Chromosome Res ; 31(2): 13, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043058

RESUMEN

We report the first chromosome-length genome assemblies for three species in the mammalian order Pholidota: the white-bellied, Chinese, and Sunda pangolins. Surprisingly, we observe extraordinary karyotypic plasticity within this order and, in female white-bellied pangolins, the largest number of chromosomes reported in a Laurasiatherian mammal: 2n = 114. We perform the first karyotype analysis of an African pangolin and report a Y-autosome fusion in white-bellied pangolins, resulting in 2n = 113 for males. We employ a novel strategy to confirm the fusion and identify the autosome involved by finding the pseudoautosomal region (PAR) in the female genome assembly and analyzing the 3D contact frequency between PAR sequences and the rest of the genome in male and female white-bellied pangolins. Analyses of genetic variability show that white-bellied pangolins have intermediate levels of genome-wide heterozygosity relative to Chinese and Sunda pangolins, consistent with two moderate declines of historical effective population size. Our results reveal a remarkable feature of pangolin genome biology and highlight the need for further studies of these unique and endangered mammals.


Asunto(s)
Mamíferos , Pangolines , Animales , Masculino , Femenino , Pangolines/genética , Mamíferos/genética , Genoma , Cromosomas/genética
6.
Nature ; 563(7732): 501-507, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429615

RESUMEN

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Asunto(s)
Aedes/genética , Infecciones por Arbovirus/virología , Arbovirus , Genoma de los Insectos/genética , Genómica/normas , Control de Insectos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Virus del Dengue/aislamiento & purificación , Femenino , Variación Genética/genética , Genética de Población , Glutatión Transferasa/genética , Resistencia a los Insecticidas/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes/genética , Piretrinas/farmacología , Estándares de Referencia , Procesos de Determinación del Sexo/genética
7.
J Hered ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364696

RESUMEN

Squamate reptiles are a highly diverse and intriguing group of tetrapods, offering valuable insights into the evolution of amniotes. The Australian water dragon (Intellagama lesueurii) is a member of the Agamidae, and sister to the core mesic Australian endemic radiation (Amphibolurinae). The species is renowned for its urban adaptability and complex social systems. We report a 1.8 Gb chromosome-length genome assembly together with the annotation of 23,675 protein-coding genes. Comparative analysis with other squamate genomes highlights gene family expansions associated with immune function, energetic homeostasis, and wound healing. This reference genome will serve as a valuable resource for studies of evolution and environmental resilience in lizards.

8.
J Hered ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171826

RESUMEN

Pteronarcys californica (Newport 1848) is commonly referred to as the giant salmonfly and is the largest species of stonefly (Insecta: Plecoptera) in the western United States. Historically, it was widespread and abundant in western rivers, but populations have experienced a substantial decline in the past few decades, becoming locally extirpated in numerous rivers in Utah, Colorado, and Montana. Although previous research has explored the ecological variables conducive to the survivability of populations of the giant salmonfly, a lack of genomic resources hampers exploration of how genetic variation is spread across extant populations. To accelerate research on this imperiled species, we present a de novo chromosomal-length genome assembly of P. californica generated from PacBio HiFi sequencing and Hi-C chromosome conformation capture. Our assembly includes 14 predicted pseudo chromosomes and 98.8% of Insecta universal core orthologs. At 2.40 gigabases, the P. californica assembly is the largest of available stonefly assemblies, highlighting at least 9.5-fold variation in assembly size across the order. Repetitive elements (REs) account for much of the genome size increase in P. californica relative to other stonefly species, with the content of Class I retroelements alone exceeding the entire assembly size of all but two other species studied. We also observed preliminary suborder-specific trends in genome size that merit testing with more robust taxon sampling.

9.
PLoS Genet ; 17(8): e1009745, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460814

RESUMEN

Patterns of genomic architecture across insects remain largely undocumented or decoupled from a broader phylogenetic context. For instance, it is unknown whether translocation rates differ between insect orders. We address broad scale patterns of genome architecture across Insecta by examining synteny in a phylogenetic framework from open-source insect genomes. To accomplish this, we add a chromosome level genome to a crucial lineage, Coleoptera. Our assembly of the Pachyrhynchus sulphureomaculatus genome is the first chromosome scale genome for the hyperdiverse Phytophaga lineage and currently the largest insect genome assembled to this scale. The genome is significantly larger than those of other weevils, and this increase in size is caused by repetitive elements. Our results also indicate that, among beetles, there are instances of long-lasting (>200 Ma) localization of genes to a particular chromosome with few translocation events. While some chromosomes have a paucity of translocations, intra-chromosomal synteny was almost absent, with gene order thoroughly shuffled along a chromosome. This large amount of reshuffling within chromosomes with few inter-chromosomal events contrasts with patterns seen in mammals in which the chromosomes tend to exchange larger blocks of material more readily. To place our findings in an evolutionary context, we compared syntenic patterns across Insecta in a phylogenetic framework. For the first time, we find that synteny decays at an exponential rate relative to phylogenetic distance. Additionally, there are significant differences in decay rates between insect orders, this pattern was not driven by Lepidoptera alone which has a substantially different rate.


Asunto(s)
Escarabajos/genética , Sintenía/genética , Gorgojos/genética , Animales , Evolución Biológica , Cromosomas/genética , Evolución Molecular , Genoma de los Insectos/genética , Genómica/métodos , Filogenia
10.
Plant J ; 111(5): 1252-1266, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779281

RESUMEN

Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.


Asunto(s)
Lupinus , Australia , Cromosomas , Genómica , Humanos , Lupinus/genética , Fitomejoramiento
11.
BMC Genomics ; 24(1): 74, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792983

RESUMEN

BACKGROUND: Gastrointestinal (GIT) helminthiasis is a global problem that affects livestock health, especially in small ruminants. One of the major helminth parasites of sheep and goats, Teladorsagia circumcincta, infects the abomasum and causes production losses, reductions in weight gain, diarrhoea and, in some cases, death in young animals. Control strategies have relied heavily on the use of anthelmintic medication but, unfortunately, T. circumcincta has developed resistance, as have many helminths. Vaccination offers a sustainable and practical solution, but there is no commercially available vaccine to prevent Teladorsagiosis. The discovery of new strategies for controlling T. circumcincta, such as novel vaccine targets and drug candidates, would be greatly accelerated by the availability of better quality, chromosome-length, genome assembly because it would allow the identification of key genetic determinants of the pathophysiology of infection and host-parasite interaction. The available draft genome assembly of T. circumcincta (GCA_002352805.1) is highly fragmented and thus impedes large-scale investigations of population and functional genomics. RESULTS: We have constructed a high-quality reference genome, with chromosome-length scaffolds, by purging alternative haplotypes from the existing draft genome assembly and scaffolding the result using chromosome conformation, capture-based, in situ Hi-C technique. The improved (Hi-C) assembly resulted in six chromosome-length scaffolds with length ranging from 66.6 Mbp to 49.6 Mbp, 35% fewer sequences and reduction in size. Substantial improvements were also achieved in both the values for N50 (57.1 Mbp) and L50 (5 Mbp). A higher and comparable level of genome and proteome completeness was achieved for Hi-C assembly on BUSCO parameters. The Hi-C assembly had a greater synteny and number of orthologs with a closely related nematode, Haemonchus contortus. CONCLUSION: This improved genomic resource is suitable as a foundation for the identification of potential targets for vaccine and drug development.


Asunto(s)
Haemonchus , Nematodos , Parásitos , Enfermedades de las Ovejas , Animales , Ovinos , Ganado , Genómica
12.
J Hered ; 114(5): 539-548, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37249392

RESUMEN

The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species.


Asunto(s)
Especies en Peligro de Extinción , Hurones , Animales , Masculino , Hurones/genética , Cariotipo , Cariotipificación , Fertilidad
13.
Genomics ; 113(3): 1605-1615, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33677057

RESUMEN

The Chinese liver fluke, Clonorchis sinensis, causes the disease clonorchiasis, affecting ~35 million people in regions of China, Vietnam, Korea and the Russian Far East. Chronic clonorchiasis causes cholangitis and can induce a malignant cancer, called cholangiocarcinoma, in the biliary system. Control in endemic regions is challenging, and often relies largely on chemotherapy with one anthelmintic, called praziquantel. Routine treatment carries a significant risk of inducing resistance to this anthelmintic in the fluke, such that the discovery of new interventions is considered important. It is hoped that the use of molecular technologies will assist this endeavour by enabling the identification of drug or vaccine targets involved in crucial biological processes and/or pathways in the parasite. Although draft genomes of C. sinensis have been published, their assemblies are fragmented. In the present study, we tackle this genome fragmentation issue by utilising, in an integrated way, advanced (second- and third-generation) DNA sequencing and informatic approaches to build a high-quality reference genome for C. sinensis, with chromosome-level contiguity and curated gene models. This substantially-enhanced genome provides a resource that could accelerate fundamental and applied molecular investigations of C. sinensis, clonorchiasis and/or cholangiocarcinoma, and assist in the discovery of new interventions against what is a highly significant, but neglected disease-complex.


Asunto(s)
Clonorquiasis , Clonorchis sinensis , Animales , Secuencia de Bases , China , Clonorquiasis/tratamiento farmacológico , Clonorquiasis/epidemiología , Clonorquiasis/genética , Clonorchis sinensis/genética , Clonorchis sinensis/metabolismo , Humanos , Federación de Rusia
14.
BMC Genomics ; 22(1): 188, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726677

RESUMEN

BACKGROUND: Basenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness. RESULTS: Here, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection. CONCLUSIONS: The growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.


Asunto(s)
Lobos , Animales , China , Cromosomas , Perros , Femenino , Genoma , Genómica , Masculino , Lobos/genética
15.
J Hered ; 112(3): 286-302, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33686424

RESUMEN

Warming climate and increasing desertification urge the identification of genes involved in heat and dehydration tolerance to better inform and target biodiversity conservation efforts. Comparisons among extant desert-adapted species can highlight parallel or convergent patterns of genome evolution through the identification of shared signatures of selection. We generate a chromosome-level genome assembly for the canyon mouse (Peromyscus crinitus) and test for a signature of parallel evolution by comparing signatures of selective sweeps across population-level genomic resequencing data from another congeneric desert specialist (Peromyscus eremicus) and a widely distributed habitat generalist (Peromyscus maniculatus), that may be locally adapted to arid conditions. We identify few shared candidate loci involved in desert adaptation and do not find support for a shared pattern of parallel evolution. Instead, we hypothesize divergent molecular mechanisms of desert adaptation among deer mice, potentially tied to species-specific historical demography, which may limit or enhance adaptation. We identify a number of candidate loci experiencing selective sweeps in the P. crinitus genome that are implicated in osmoregulation (Trypsin, Prostasin) and metabolic tuning (Kallikrein, eIF2-alpha kinase GCN2, APPL1/2), which may be important for accommodating hot and dry environmental conditions.


Asunto(s)
Adaptación Fisiológica , Peromyscus , Adaptación Fisiológica/genética , Animales , Clima , Genoma , Peromyscus/genética , Análisis de Secuencia de ADN
16.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919286

RESUMEN

Legumes are of great interest for sustainable agricultural production as they fix atmospheric nitrogen to improve the soil. Medicago truncatula is a well-established model legume, and extensive studies in fundamental molecular, physiological, and developmental biology have been undertaken to translate into trait improvements in economically important legume crops worldwide. However, M. truncatula reference genome was generated in the accession Jemalong A17, which is highly recalcitrant to transformation. M. truncatula R108 is more attractive for genetic studies due to its high transformation efficiency and Tnt1-insertion population resource for functional genomics. The need to perform accurate synteny analysis and comprehensive genome-scale comparisons necessitates a chromosome-length genome assembly for M. truncatula cv. R108. Here, we performed in situ Hi-C (48×) to anchor, order, orient scaffolds, and correct misjoins of contigs in a previously published genome assembly (R108 v1.0), resulting in an improved genome assembly containing eight chromosome-length scaffolds that span 97.62% of the sequenced bases in the input assembly. The long-range physical information data generated using Hi-C allowed us to obtain a chromosome-length ordering of the genome assembly, better validate previous draft misjoins, and provide further insights accurately predicting synteny between A17 and R108 regions corresponding to the known chromosome 4/8 translocation. Furthermore, mapping the Tnt1 insertion landscape on this reference assembly presents an important resource for M. truncatula functional genomics by supporting efficient mutant gene identification in Tnt1 insertion lines. Our data provide a much-needed foundational resource that supports functional and molecular research into the Leguminosae for sustainable agriculture and feeding the future.


Asunto(s)
Mapeo Cromosómico , Genoma de Planta , Medicago truncatula/genética , Genómica , Retroelementos , Análisis de Secuencia de ADN
17.
Proc Natl Acad Sci U S A ; 113(31): E4504-12, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432957

RESUMEN

During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.


Asunto(s)
Cromosomas Humanos X/genética , Eliminación de Gen , Genoma Humano/genética , Repeticiones de Microsatélite/genética , Inactivación del Cromosoma X , Animales , Sitios de Unión/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Femenino , Humanos , Macaca mulatta , Ratones , Unión Proteica
19.
BMC Biol ; 15(1): 110, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29145861

RESUMEN

BACKGROUND: The de novo assembly of repeat-rich mammalian genomes using only high-throughput short read sequencing data typically results in highly fragmented genome assemblies that limit downstream applications. Here, we present an iterative approach to hybrid de novo genome assembly that incorporates datasets stemming from multiple genomic technologies and methods. We used this approach to improve the gray mouse lemur (Microcebus murinus) genome from early draft status to a near chromosome-scale assembly. METHODS: We used a combination of advanced genomic technologies to iteratively resolve conflicts and super-scaffold the M. murinus genome. RESULTS: We improved the M. murinus genome assembly to a scaffold N50 of 93.32 Mb. Whole genome alignments between our primary super-scaffolds and 23 human chromosomes revealed patterns that are congruent with historical comparative cytogenetic data, thus demonstrating the accuracy of our de novo scaffolding approach and allowing assignment of scaffolds to M. murinus chromosomes. Moreover, we utilized our independent datasets to discover and characterize sequences associated with centromeres across the mouse lemur genome. Quality assessment of the final assembly found 96% of mouse lemur canonical transcripts nearly complete, comparable to other published high-quality reference genome assemblies. CONCLUSIONS: We describe a new assembly of the gray mouse lemur (Microcebus murinus) genome with chromosome-scale scaffolds produced using a hybrid bioinformatic and sequencing approach. The approach is cost effective and produces superior results based on metrics of contiguity and completeness. Our results show that emerging genomic technologies can be used in combination to characterize centromeres of non-model species and to produce accurate de novo chromosome-scale genome assemblies of complex mammalian genomes.


Asunto(s)
Centrómero/genética , Cheirogaleidae/genética , Genoma , Animales , Biología Computacional , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
20.
Genome Biol Evol ; 16(1)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38190231

RESUMEN

We present a high-quality assembly and annotation of the periodical cicada species, Magicicada septendecula (Hemiptera: Auchenorrhyncha: Cicadidae). Periodical cicadas have a significant ecological impact, serving as a food source for many mammals, reptiles, and birds. Magicicada are well known for their massive emergences of 1 to 3 species that appear in different locations in the eastern United States nearly every year. These year classes ("broods") emerge dependably every 13 or 17 yr in a given location. Recently, it has become clear that 4-yr early or late emergences of a sizeable portion of a population are an important part of the history of brood formation; however, the biological mechanisms by which they track the passage of time remain a mystery. Using PacBio HiFi reads in conjunction with Hi-C proximity ligation data, we have assembled and annotated the first whole genome for a periodical cicada, an important resource for future phylogenetic and comparative genomic analysis. This also represents the first quality genome assembly and annotation for the Hemipteran superfamily Cicadoidea. With a scaffold N50 of 518.9 Mb and a complete BUSCO score of 96.7%, we are confident that this assembly will serve as a vital resource toward uncovering the genomic basis of periodical cicadas' long, synchronized life cycles and will provide a robust framework for further investigations into these insects.


Asunto(s)
Hemípteros , Animales , Estados Unidos , Filogenia , Hemípteros/genética , Estadios del Ciclo de Vida , Genómica , Cromosomas , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda