Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 582(7811): 277-282, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349121

RESUMEN

The great majority of globally circulating pathogens go undetected, undermining patient care and hindering outbreak preparedness and response. To enable routine surveillance and comprehensive diagnostic applications, there is a need for detection technologies that can scale to test many samples1-3 while simultaneously testing for many pathogens4-6. Here, we develop Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids (CARMEN), a platform for scalable, multiplexed pathogen detection. In the CARMEN platform, nanolitre droplets containing CRISPR-based nucleic acid detection reagents7 self-organize in a microwell array8 to pair with droplets of amplified samples, testing each sample against each CRISPR RNA (crRNA) in replicate. The combination of CARMEN and Cas13 detection (CARMEN-Cas13) enables robust testing of more than 4,500 crRNA-target pairs on a single array. Using CARMEN-Cas13, we developed a multiplexed assay that simultaneously differentiates all 169 human-associated viruses with at least 10 published genome sequences and rapidly incorporated an additional crRNA to detect the causative agent of the 2020 COVID-19 pandemic. CARMEN-Cas13 further enables comprehensive subtyping of influenza A strains and multiplexed identification of dozens of HIV drug-resistance mutations. The intrinsic multiplexing and throughput capabilities of CARMEN make it practical to scale, as miniaturization decreases reagent cost per test by more than 300-fold. Scalable, highly multiplexed CRISPR-based nucleic acid detection shifts diagnostic and surveillance efforts from targeted testing of high-priority samples to comprehensive testing of large sample sets, greatly benefiting patients and public health9-11.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas Analíticas Microfluídicas/métodos , Virosis/diagnóstico , Virosis/virología , Animales , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Farmacorresistencia Viral/genética , Genoma Viral/genética , VIH/clasificación , VIH/genética , VIH/aislamiento & purificación , Humanos , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , ARN Guía de Kinetoplastida/genética , SARS-CoV-2 , Sensibilidad y Especificidad
2.
Emerg Infect Dis ; 28(13): S26-S33, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36502434

RESUMEN

A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , SARS-CoV-2 , Organización Mundial de la Salud
3.
Bull World Health Organ ; 100(6): 366-374, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35694628

RESUMEN

Objective: To assess the stability of improvements in global respiratory virus surveillance in countries supported by the United States Centers for Disease Control and Prevention (CDC) after reductions in CDC funding and with the stress of the coronavirus disease 2019 (COVID-19) pandemic. Methods: We assessed whether national influenza surveillance systems of CDC-funded countries: (i) continued to analyse as many specimens between 2013 and 2021; (ii) participated in activities of the World Health Organization's (WHO) Global Influenza Surveillance and Response System; (iii) tested enough specimens to detect rare events or signals of unusual activity; and (iv) demonstrated stability before and during the COVID-19 pandemic. We used CDC budget records and data from the WHO Global Influenza Surveillance and Response System. Findings: While CDC reduced per-country influenza funding by about 75% over 10 years, the number of specimens tested annually remained stable (mean 2261). Reporting varied substantially by country and transmission zone. Countries funded by CDC accounted for 71% (range 61-75%) of specimens included in WHO consultations on the composition of influenza virus vaccines. In 2019, only eight of the 17 transmission zones sent enough specimens to WHO collaborating centres before the vaccine composition meeting to reliably identify antigenic variants. Conclusion: Great progress has been made in the global understanding of influenza trends and seasonality. To optimize surveillance to identify atypical influenza viruses, and to integrate molecular testing, sequencing and reporting of severe acute respiratory syndrome coronavirus 2 into existing systems, funding must continue to support these efforts.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , COVID-19/epidemiología , COVID-19/prevención & control , Centers for Disease Control and Prevention, U.S. , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias/prevención & control , Vigilancia de la Población , Estados Unidos/epidemiología
4.
MMWR Morb Mortal Wkly Rep ; 71(29): 913-919, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35862284

RESUMEN

Before the emergence of SARS-CoV-2, the virus that causes COVID-19, influenza activity in the United States typically began to increase in the fall and peaked in February. During the 2021-22 season, influenza activity began to increase in November and remained elevated until mid-June, featuring two distinct waves, with A(H3N2) viruses predominating for the entire season. This report summarizes influenza activity during October 3, 2021-June 11, 2022, in the United States and describes the composition of the Northern Hemisphere 2022-23 influenza vaccine. Although influenza activity is decreasing and circulation during summer is typically low, remaining vigilant for influenza infections, performing testing for seasonal influenza viruses, and monitoring for novel influenza A virus infections are important. An outbreak of highly pathogenic avian influenza A(H5N1) is ongoing; health care providers and persons with exposure to sick or infected birds should remain vigilant for onset of symptoms consistent with influenza. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences.


Asunto(s)
COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Vigilancia de la Población , SARS-CoV-2 , Estaciones del Año , Estados Unidos/epidemiología
5.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143464

RESUMEN

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genómica , Humanos , Prevalencia , Vigilancia en Salud Pública/métodos , Estados Unidos/epidemiología
6.
MMWR Morb Mortal Wkly Rep ; 70(3): 95-99, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33476315

RESUMEN

On December 14, 2020, the United Kingdom reported a SARS-CoV-2 variant of concern (VOC), lineage B.1.1.7, also referred to as VOC 202012/01 or 20I/501Y.V1.* The B.1.1.7 variant is estimated to have emerged in September 2020 and has quickly become the dominant circulating SARS-CoV-2 variant in England (1). B.1.1.7 has been detected in over 30 countries, including the United States. As of January 13, 2021, approximately 76 cases of B.1.1.7 have been detected in 12 U.S. states.† Multiple lines of evidence indicate that B.1.1.7 is more efficiently transmitted than are other SARS-CoV-2 variants (1-3). The modeled trajectory of this variant in the U.S. exhibits rapid growth in early 2021, becoming the predominant variant in March. Increased SARS-CoV-2 transmission might threaten strained health care resources, require extended and more rigorous implementation of public health strategies (4), and increase the percentage of population immunity required for pandemic control. Taking measures to reduce transmission now can lessen the potential impact of B.1.1.7 and allow critical time to increase vaccination coverage. Collectively, enhanced genomic surveillance combined with continued compliance with effective public health measures, including vaccination, physical distancing, use of masks, hand hygiene, and isolation and quarantine, will be essential to limiting the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Strategic testing of persons without symptoms but at higher risk of infection, such as those exposed to SARS-CoV-2 or who have frequent unavoidable contact with the public, provides another opportunity to limit ongoing spread.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , COVID-19/transmisión , Genoma Viral , Humanos , Mutación , Estados Unidos/epidemiología
7.
MMWR Morb Mortal Wkly Rep ; 68(40): 880-884, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31600182

RESUMEN

During May 19-September 28, 2019,* low levels of influenza activity were reported in the United States, with cocirculation of influenza A and influenza B viruses. In the Southern Hemisphere seasonal influenza viruses circulated widely, with influenza A(H3) predominating in many regions; however, influenza A(H1N1)pdm09 and influenza B viruses were predominant in some countries. In late September, the World Health Organization (WHO) recommended components for the 2020 Southern Hemisphere influenza vaccine and included an update to the A(H3N2) and B/Victoria-lineage components. Annual influenza vaccination is the best means for preventing influenza illness and its complications, and vaccination before influenza activity increases is optimal. Health care providers should recommend vaccination for all persons aged ≥6 months who do not have contraindications to vaccination (1).


Asunto(s)
Salud Global/estadística & datos numéricos , Vacunas contra la Influenza/química , Gripe Humana/epidemiología , Vigilancia de la Población , Farmacorresistencia Viral , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/virología , Estaciones del Año , Estados Unidos/epidemiología
8.
MMWR Morb Mortal Wkly Rep ; 68(6): 125-134, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30763296

RESUMEN

CDC collects, compiles, and analyzes data on influenza activity and viruses in the United States. During September 30, 2018-February 2, 2019,* influenza activity† in the United States was low during October and November, increased in late December, and remained elevated through early February. As of February 2, 2019, this has been a low-severity influenza season (1), with a lower percentage of outpatient visits for influenza-like illness (ILI), lower rates of hospitalization, and fewer deaths attributed to pneumonia and influenza, compared with recent seasons. Influenza-associated hospitalization rates among children are similar to those observed in influenza A(H1N1)pdm09 predominant seasons; 28 influenza-associated pediatric deaths occurring during the 2018-19 season have been reported to CDC. Whereas influenza A(H1N1)pdm09 viruses predominated in most areas of the country, influenza A(H3N2) viruses have predominated in the southeastern United States, and in recent weeks accounted for a growing proportion of influenza viruses detected in several other regions. Small numbers of influenza B viruses (<3% of all influenza-positive tests performed by public health laboratories) also were reported. The majority of the influenza viruses characterized antigenically are similar to the cell culture-propagated reference viruses representing the 2018-19 Northern Hemisphere influenza vaccine viruses. Health care providers should continue to offer and encourage vaccination to all unvaccinated persons aged ≥6 months as long as influenza viruses are circulating. Finally, regardless of vaccination status, it is important that persons with confirmed or suspected influenza who have severe, complicated, or progressive illness; who require hospitalization; or who are at high risk for influenza complications be treated with antiviral medications.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Anciano , Niño , Mortalidad del Niño , Preescolar , Farmacorresistencia Viral , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Mortalidad Infantil , Recién Nacido , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Vacunas contra la Influenza/química , Gripe Humana/mortalidad , Gripe Humana/prevención & control , Gripe Humana/virología , Persona de Mediana Edad , Pacientes Ambulatorios/estadística & datos numéricos , Neumonía/mortalidad , Prevalencia , Estaciones del Año , Estados Unidos/epidemiología , Adulto Joven
9.
MMWR Morb Mortal Wkly Rep ; 68(24): 544-551, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31220057

RESUMEN

Influenza activity* in the United States during the 2018-19 season (September 30, 2018-May 18, 2019) was of moderate severity (1). Nationally, influenza-like illness (ILI)† activity began increasing in November, peaked during mid-February, and returned to below baseline in mid-April; the season lasted 21 weeks,§ making it the longest season in 10 years. Illness attributed to influenza A viruses predominated, with very little influenza B activity. Two waves of influenza A were notable during this extended season: influenza A(H1N1)pdm09 viruses from October 2018 to mid-February 2019 and influenza A(H3N2) viruses from February through May 2019. Compared with the 2017-18 influenza season, rates of hospitalization this season were lower for adults, but were similar for children. Although influenza activity is currently below surveillance baselines, testing for seasonal influenza viruses and monitoring for novel influenza A virus infections should continue year-round. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Anciano , Antivirales/farmacología , Niño , Mortalidad del Niño , Preescolar , Costo de Enfermedad , Farmacorresistencia Viral , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Mortalidad Infantil , Recién Nacido , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Gripe Humana/mortalidad , Gripe Humana/prevención & control , Gripe Humana/virología , Persona de Mediana Edad , Pacientes Ambulatorios/estadística & datos numéricos , Neumonía/mortalidad , Estaciones del Año , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiología , Adulto Joven
10.
MMWR Morb Mortal Wkly Rep ; 67(49): 1369-1371, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30543604

RESUMEN

Influenza activity in the United States was low during October 2018, and, although it increased slowly during November, activity remains low across most of the country.* During the week ending December 1, 2018, the percentage of outpatient visits for influenza-like illness† (ILI) was equal to the national baseline§ (Figure) and was at or slightly above the region-specific baseline in four of the 10 U.S. Department of Health and Human Services regions¶ (Regions 4 and 7-9). The majority of jurisdictions experienced minimal or low ILI activity since September 30; however, two experienced moderate ILI activity, and two experienced high ILI activity** during the week ending December 1. The percentage of deaths attributed to pneumonia and influenza remains below the epidemic threshold,†† and the rate of influenza-associated hospitalizations remains low. Five laboratory-confirmed, influenza-associated pediatric deaths occurring since September 30 have been reported to CDC. During the week ending December 1, the majority of jurisdictions (40 states, the District of Columbia, Puerto Rico, and U.S. Virgin Islands) reported sporadic or local geographic spread of influenza activity, nine states reported regional activity, and one state reported widespread activity.§§.


Asunto(s)
Gripe Humana/epidemiología , Vigilancia de la Población , Atención Ambulatoria , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/prevención & control , Gripe Humana/virología , Estaciones del Año , Estados Unidos/epidemiología
11.
MMWR Morb Mortal Wkly Rep ; 67(42): 1178-1185, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30359347

RESUMEN

During May 20-October 13, 2018,* low levels of influenza activity were reported in the United States, with a mix of influenza A and B viruses circulating. Seasonal influenza activity in the Southern Hemisphere was low overall, with influenza A(H1N1)pdm09 predominating in many regions. Antigenic testing of available influenza A and B viruses indicated that no significant antigenic drift in circulating viruses had emerged. In late September, the components for the 2019 Southern Hemisphere influenza vaccine were selected and included an incremental update to the A(H3N2) vaccine virus used in egg-based vaccine manufacturing; no change was recommended for the A(H3N2) component of cell-manufactured or recombinant influenza vaccines. Annual influenza vaccination is the best method for preventing influenza illness and its complications, and all persons aged ≥6 months who do not have contraindications should receive influenza vaccine, preferably before the onset of influenza circulation in their community, which often begins in October and peaks during December-February. Health care providers should offer vaccination by the end of October and should continue to recommend and administer influenza vaccine to previously unvaccinated patients throughout the 2018-19 influenza season (1). In addition, during May 20-October 13, a small number of nonhuman influenza "variant" virus infections† were reported in the United States; most were associated with exposure to swine. Although limited human-to-human transmission might have occurred in one instance, no ongoing community transmission was identified. Vulnerable populations, especially young children and other persons at high risk for serious influenza complications, should avoid swine barns at agricultural fairs, or close contact with swine.§.


Asunto(s)
Brotes de Enfermedades , Salud Global/estadística & datos numéricos , Gripe Humana/epidemiología , Vigilancia de la Población , Farmacorresistencia Viral , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Virus de la Influenza B/aislamiento & purificación , Vacunas contra la Influenza/química , Gripe Humana/virología , Estaciones del Año , Estados Unidos/epidemiología
12.
MMWR Morb Mortal Wkly Rep ; 67(6): 169-179, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29447145

RESUMEN

Influenza activity in the United States began to increase in early November 2017 and rose sharply from December through February 3, 2018; elevated influenza activity is expected to continue for several more weeks. Influenza A viruses have been most commonly identified, with influenza A(H3N2) viruses predominating, but influenza A(H1N1)pdm09 and influenza B viruses were also reported. This report summarizes U.S. influenza activity* during October 1, 2017-February 3, 2018,† and updates the previous summary (1).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Anciano , Atención Ambulatoria/estadística & datos numéricos , Antivirales/farmacología , Niño , Mortalidad del Niño , Preescolar , Farmacorresistencia Viral , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Gripe Humana/mortalidad , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Neumonía/mortalidad , Embarazo , Estaciones del Año , Estados Unidos/epidemiología , Adulto Joven
13.
MMWR Morb Mortal Wkly Rep ; 67(22): 634-642, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29879098

RESUMEN

The United States 2017-18 influenza season (October 1, 2017-May 19, 2018) was a high severity season with high levels of outpatient clinic and emergency department visits for influenza-like illness (ILI), high influenza-related hospitalization rates, and elevated and geographically widespread influenza activity across the country for an extended period. Nationally, ILI activity began increasing in November, reaching an extended period of high activity during January-February, and remaining elevated through March. Influenza A(H3N2) viruses predominated through February and were predominant overall for the season; influenza B viruses predominated from March onward. This report summarizes U.S. influenza activity* during October 1, 2017-May 19, 2018.†.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Anciano , Niño , Mortalidad del Niño , Preescolar , Farmacorresistencia Viral , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Mortalidad Infantil , Recién Nacido , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Vacunas contra la Influenza/química , Gripe Humana/mortalidad , Gripe Humana/prevención & control , Gripe Humana/virología , Persona de Mediana Edad , Pacientes Ambulatorios/estadística & datos numéricos , Neumonía/mortalidad , Estaciones del Año , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiología , Adulto Joven
14.
J Virol ; 90(23): 10963-10971, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681134

RESUMEN

The swine-human interface created at agricultural fairs, along with the generation of and maintenance of influenza A virus diversity in exhibition swine, presents an ongoing threat to public health. Nucleotide sequences of influenza A virus isolates collected from exhibition swine in Ohio (n = 262) and Indiana (n = 103) during 2009 to 2013 were used to investigate viral evolution and movement within this niche sector of the swine industry. Phylogenetic and Bayesian analyses were employed to identify introductions of influenza A virus to exhibition swine and study viral population dynamics. In 2013 alone, we identified 10 independent introductions of influenza A virus into Ohio and/or Indiana exhibition swine. Frequently, viruses from the same introduction were identified at multiple fairs within the region, providing evidence of rapid and widespread viral movement within the exhibition swine populations of the two states. While pigs moving from fair to fair to fair is possible in some locations, the concurrent detection of nearly identical strains at several fairs indicates that a common viral source was more likely. Importantly, we detected an association between the high number of human variant H3N2 (H3N2v) virus infections in 2012 and the widespread circulation of influenza A viruses of the same genotype in exhibition swine in Ohio fairs sampled that year. The extent of viral diversity observed in exhibition swine and the rapidity with which it disseminated across long distances indicate that novel strains of influenza A virus will continue to emerge and spread within exhibition swine populations, presenting an ongoing threat to humans. IMPORTANCE: Understanding the underlying population dynamics of influenza A viruses in commercial and exhibition swine is central to assessing the risk for human infections with variant viruses, including H3N2v. We used viral genomic sequences from isolates collected from exhibition swine during 2009 to 2013 to understand how the peak of H3N2v cases in 2012 relates to long-term trends in the population dynamics of pandemic viruses recently introduced into commercial and exhibition swine in the United States. The results of our spatial analysis underscore the key role of rapid viral dispersal in spreading multiple genetic lineages throughout a multistate network of agricultural fairs, providing opportunities for divergent lineages to coinfect, reassort, and generate new viral genotypes. The higher genetic diversity of genotypes cocirculating in exhibition swine since 2013 could facilitate the evolution of new reassortants, potentially with even greater ability to cause severe infections in humans or cause human-to-human transmission, highlighting the need for continued vigilance.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Teorema de Bayes , Evolución Molecular , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados Unidos/epidemiología
15.
MMWR Morb Mortal Wkly Rep ; 66(39): 1043-1051, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28981486

RESUMEN

During May 21-September 23, 2017,* the United States experienced low-level seasonal influenza virus activity; however, beginning in early September, CDC received reports of a small number of localized influenza outbreaks caused by influenza A(H3N2) viruses. In addition to influenza A(H3N2) viruses, influenza A(H1N1)pdm09 and influenza B viruses were detected during May-September worldwide and in the United States. Influenza B viruses predominated in the United States from late May through late June, and influenza A viruses predominated beginning in early July. The majority of the influenza viruses collected and received from the United States and other countries during that time have been characterized genetically or antigenically as being similar to the 2017 Southern Hemisphere and 2017-18 Northern Hemisphere cell-grown vaccine reference viruses; however, a smaller proportion of the circulating A(H3N2) viruses showed similarity to the egg-grown A(H3N2) vaccine reference virus which represents the A(H3N2) viruses used for the majority of vaccine production in the United States. Also, during May 21-September 23, 2017, CDC confirmed a total of 33 influenza variant virus† infections; two were influenza A(H1N2) variant (H1N2v) viruses (Ohio) and 31 were influenza A(H3N2) variant (H3N2v) viruses (Delaware [1], Maryland [13], North Dakota [1], Pennsylvania [1], and Ohio [15]). An additional 18 specimens from Maryland have tested presumptive positive for H3v and further analysis is being conducted at CDC.


Asunto(s)
Brotes de Enfermedades , Salud Global/estadística & datos numéricos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/epidemiología , Vigilancia de la Población , Centers for Disease Control and Prevention, U.S. , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Estaciones del Año , Estados Unidos/epidemiología
16.
MMWR Morb Mortal Wkly Rep ; 66(48): 1318-1326, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29216030

RESUMEN

Influenza activity in the United States was low during October 2017, but has been increasing since the beginning of November. Influenza A viruses have been most commonly identified, with influenza A(H3N2) viruses predominating. Several influenza activity indicators were higher than is typically seen for this time of year. The majority of influenza viruses characterized during this period were genetically or antigenically similar to the 2017-18 Northern Hemisphere cell-grown vaccine reference viruses. These data indicate that currently circulating viruses have not undergone significant antigenic drift; however, circulating A(H3N2) viruses are antigenically less similar to egg-grown A(H3N2) viruses used for producing the majority of influenza vaccines in the United States. It is difficult to predict which influenza viruses will predominate in the 2017-18 influenza season; however, in recent past seasons in which A(H3N2) viruses predominated, hospitalizations and deaths were more common, and the effectiveness of the vaccine was lower. Annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. Multiple influenza vaccines are approved and recommended for use during the 2017-18 season, and vaccination should continue to be offered as long as influenza viruses are circulating and unexpired vaccine is available. This report summarizes U.S. influenza activity* during October 1-November 25, 2017 (surveillance weeks 40-47).†.


Asunto(s)
Brotes de Enfermedades , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza B/aislamiento & purificación , Gripe Humana/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Anciano , Niño , Mortalidad del Niño , Preescolar , Farmacorresistencia Viral , Hospitalización/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/genética , Gripe Humana/mortalidad , Gripe Humana/virología , Persona de Mediana Edad , Pacientes Ambulatorios/estadística & datos numéricos , Neumonía/epidemiología , Neumonía/mortalidad , Estados Unidos/epidemiología , Adulto Joven
17.
J Virol ; 89(10): 5371-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25741003

RESUMEN

UNLABELLED: While geographic distance often restricts the spread of pathogens via hosts, this barrier may be compromised when host species are mobile. Migratory waterfowl in the order Anseriformes are important reservoir hosts for diverse populations of avian-origin influenza A viruses (AIVs) and are assumed to spread AIVs during their annual continental-scale migrations. However, support for this hypothesis is limited, and it is rarely tested using data from comprehensive surveillance efforts incorporating both the temporal and spatial aspects of host migratory patterns. We conducted intensive AIV surveillance of waterfowl using the North American Mississippi Migratory Flyway (MMF) over three autumn migratory seasons. Viral isolates (n = 297) from multiple host species were sequenced and analyzed for patterns of gene dispersal between northern staging and southern wintering locations. Using a phylogenetic and nucleotide identity framework, we observed a larger amount of gene dispersal within this flyway rather than between the other three longitudinally identified North American flyways. Across seasons, we observed patterns of regional persistence of diversity for each genomic segment, along with limited survival of dispersed AIV gene lineages. Reassortment increased with both time and distance, resulting in transient AIV constellations. This study shows that within the MMF, AIV gene flow favors spread along the migratory corridor within a season, and also that intensive surveillance during bird migration is important for identifying virus dispersal on time scales relevant to pandemic responsiveness. In addition, this study indicates that comprehensive monitoring programs to capture AIV diversity are critical for providing insight into AIV evolution and ecology in a major natural reservoir. IMPORTANCE: Migratory birds are a reservoir for antigenic and genetic diversity of influenza A viruses (AIVs) and are implicated in the spread of virus diversity that has contributed to previous pandemic events. Evidence for dispersal of avian-origin AIVs by migratory birds is rarely examined on temporal scales relevant to pandemic or panzootic threats. Therefore, characterizing AIV movement by hosts within a migratory season is important for implementing effective surveillance strategies. We conducted surveillance following birds along a major North American migratory route and observed that within a migratory season, AIVs rapidly reassorted and gene lineages were dispersed primarily within the migratory corridor. Patterns of regional persistence were observed across seasons for each gene segment. We show that dispersal of AIV gene lineages by migratory birds occurs quickly along migratory routes and that surveillance for AIVs threatening human and animal health should focus attention on these routes.


Asunto(s)
Anseriformes/virología , Reservorios de Enfermedades/virología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Migración Animal , Animales , Monitoreo del Ambiente , Flujo Génico , Genes Virales , Variación Genética , Interacciones Huésped-Patógeno , Humanos , Mississippi , América del Norte , Filogeografía , Ríos , Estaciones del Año
18.
J Gen Virol ; 96(Pt 2): 269-276, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25351723

RESUMEN

Introductions of H7 influenza A virus (IAV) from wild birds into poultry have been documented worldwide, resulting in varying degrees of morbidity and mortality. H7 IAV infection in domestic poultry has served as a source of human infection and disease. We report the detection of H7N9 subtype IAVs in Minnesota (MN) turkey farms during 2009 and 2011. The full genome was sequenced from eight isolates as well as the haemagglutinin (HA) and neuraminidase (NA) gene segments of H7 and N9 virus subtypes for 108 isolates from North American wild birds between 1986 and 2012. Through maximum-likelihood and coalescent phylogenetic analyses, we identified the recent H7 and N9 IAV ancestors of the turkey-origin H7N9 IAVs, estimated the time and geographical origin of the ancestral viruses, and determined the relatedness between the 2009 and 2011 turkey-origin H7N9 IAVs. Analyses supported that the 2009 and 2011 viruses were distantly related genetically, suggesting that the two outbreaks arose from independent introduction events from wild birds. Our findings further supported that the 2011 MN turkey-origin H7N9 virus was closely related to H7N9 IAVs isolated in poultry in Nebraska during the same year. Although the precise origin of the wild-bird donor of the turkey-origin H7N9 IAVs could not be determined, our findings suggested that, for both the NA and HA gene segments, the MN turkey-origin H7N9 viruses were related to viruses circulating in wild birds between 2006 and 2011 in the Mississippi Flyway.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Análisis por Conglomerados , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/clasificación , Subtipo H7N9 del Virus de la Influenza A/genética , Minnesota/epidemiología , Epidemiología Molecular , Datos de Secuencia Molecular , Neuraminidasa/genética , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Pavos , Proteínas Virales/genética
19.
PLoS Pathog ; 9(8): e1003570, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24009503

RESUMEN

Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.


Asunto(s)
Migración Animal , Charadriiformes/virología , Virus de la Influenza A , Gripe Aviar/epidemiología , Modelos Biológicos , Animales , Humanos , Gripe Aviar/transmisión , América del Norte/epidemiología
20.
J Virol ; 86(3): 1750-7, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22090127

RESUMEN

The emergence of new pandemic influenza A viruses requires overcoming barriers to cross-species transmission as viruses move from animal reservoirs into humans. This complicated process is driven by both individual gene mutations and genome reassortments. The viral polymerase complex, composed of the proteins PB1, PB2, and PA, is a major factor controlling host adaptation, and reassortment events involving polymerase gene segments occurred with past pandemic viruses. Here we investigate the ability of polymerase reassortment to restore the activity of an avian influenza virus polymerase that is normally impaired in human cells. Our data show that the substitution of human-origin PA subunits into an avian influenza virus polymerase alleviates restriction in human cells and increases polymerase activity in vitro. Reassortants with 2009 pandemic H1N1 PA proteins were the most active. Mutational analyses demonstrated that the majority of the enhancing activity in human PA results from a threonine-to-serine change at residue 552. Reassortant viruses with avian polymerases and human PA subunits, or simply the T552S mutation, displayed faster replication kinetics in culture and increased pathogenicity in mice compared to those containing a wholly avian polymerase complex. Thus, the acquisition of a human PA subunit, or the signature T552S mutation, is a potential mechanism to overcome the species-specific restriction of avian polymerases and increase virus replication. Our data suggest that the human, avian, swine, and 2009 H1N1-like viruses that are currently cocirculating in pig populations set the stage for PA reassortments with the potential to generate novel viruses that could possess expanded tropism and enhanced pathogenicity.


Asunto(s)
Virus de la Influenza A/genética , Mutación , Virus Reordenados , Animales , Línea Celular , Humanos , Virus de la Influenza A/enzimología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda