Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nitric Oxide ; 149: 1-6, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38806106

RESUMEN

Intestinal transplantation is a complex technical procedure that provides patients suffering from end-stage intestinal failure an opportunity to enjoy improved quality of life, nutrition and survival. Compared to other types of organ transplants, it is a relatively new advancement in the field of organ transplantation. Nevertheless, great advances have been made over the past few decades to the present era, including the use of ischemic preconditioning, gene therapy, and addition of pharmacological supplements to preservation solutions. However, despite these strides, intestinal transplantation is still a challenging endeavor due to several factors. Notable among them is ischemia-reperfusion injury (IRI), which results in loss of cellular integrity and mucosal barrier function. In addition, IRI causes graft failure, delayed graft function, and decreased graft and recipient survival. This has necessitated the search for novel therapeutic avenues and improved transplantation protocols to prevent or attenuate intestinal IRI. Among the many candidate agents that are being investigated to combat IRI and its associated complications, nitric oxide (NO). NO is an endogenously produced gaseous signaling molecule with several therapeutic properties. The purpose of this mini-review is to discuss IRI and its related complications in intestinal transplantation, and NO as an emerging pharmacological tool against this challenging pathological condition. i.


Asunto(s)
Rechazo de Injerto , Mucosa Intestinal , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Rechazo de Injerto/prevención & control , Animales , Intestinos/efectos de los fármacos , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Funcion de la Barrera Intestinal
2.
Mol Biol Rep ; 51(1): 473, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553658

RESUMEN

Ischemia-reperfusion injury (IRI) is a critical pathological condition in which cell death plays a major contributory role, and negatively impacts post-transplant outcomes. At the cellular level, hypoxia due to ischemia disturbs cellular metabolism and decreases cellular bioenergetics through dysfunction of mitochondrial electron transport chain, causing a switch from cellular respiration to anaerobic metabolism, and subsequent cascades of events that lead to increased intracellular concentrations of Na+, H+ and Ca2+ and consequently cellular edema. Restoration of blood supply after ischemia provides oxygen to the ischemic tissue in excess of its requirement, resulting in over-production of reactive oxygen species (ROS), which overwhelms the cells' antioxidant defence system, and thereby causing oxidative damage in addition to activating pro-inflammatory pathways to cause cell death. Moderate ischemia and reperfusion may result in cell dysfunction, which may not lead to cell death due to activation of recovery systems to control ROS production and to ensure cell survival. However, prolonged and severe ischemia and reperfusion induce cell death by apoptosis, mitoptosis, necrosis, necroptosis, autophagy, mitophagy, mitochondrial permeability transition (MPT)-driven necrosis, ferroptosis, pyroptosis, cuproptosis and parthanoptosis. This review discusses cellular and molecular mechanisms of these various forms of cell death in the context of organ transplantation, and their inhibition, which holds clinical promise in the quest to prevent IRI and improve allograft quality and function for a long-term success of organ transplantation.


Asunto(s)
Trasplante de Órganos , Daño por Reperfusión , Humanos , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular , Necrosis , Daño por Reperfusión/metabolismo , Trasplante de Órganos/efectos adversos , Isquemia
3.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396887

RESUMEN

Kidney transplantation is preferred for end-stage renal disease. The current gold standard for kidney preservation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal graft damage through ischemia-reperfusion injury (IRI). We previously reported renal graft protection after SCS with a hydrogen sulfide donor, sodium thiosulfate (STS), at 4 °C. Therefore, this study aims to investigate whether SCS at 10 °C with STS and Hemopure (blood substitute), will provide similar protection. Using in vitro model of IRI, we subjected rat renal proximal tubular epithelial cells to hypoxia-reoxygenation for 24 h at 10 °C with or without STS and measured cell viability. In vivo, we preserved 36 donor kidneys of Lewis rats for 24 h in a preservation solution at 10 °C supplemented with STS, Hemopure, or both followed by transplantation. Tissue damage and recipient graft function parameters, including serum creatinine, blood urea nitrogen, urine osmolality, and glomerular filtration rate (GFR), were evaluated. STS-treated proximal tubular epithelial cells exhibited enhanced viability at 10 °C compared with untreated control cells (p < 0.05). Also, STS and Hemopure improved renal graft function compared with control grafts (p < 0.05) in the early time period after the transplant, but long-term function did not reach significance. Overall, renal graft preservation at 10 °C with STS and Hemopure supplementation has the potential to enhance graft function and reduce kidney damage, suggesting a novel approach to reducing IRI and post-transplant complications.


Asunto(s)
Hemoglobinas , Trasplante de Riñón , Daño por Reperfusión , Tiosulfatos , Ratas , Animales , Preservación de Órganos , Supervivencia de Injerto , Ratas Endogámicas Lew , Riñón , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control
4.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834928

RESUMEN

Ischemia-reperfusion injury (IRI), a pathological condition resulting from prolonged cessation and subsequent restoration of blood flow to a tissue, is an inevitable consequence of solid organ transplantation. Current organ preservation strategies, such as static cold storage (SCS), are aimed at reducing IRI. However, prolonged SCS exacerbates IRI. Recent research has examined pre-treatment approaches to more effectively attenuate IRI. Hydrogen sulfide (H2S), the third established member of a family of gaseous signaling molecules, has been shown to target the pathophysiology of IRI and thus appears to be a viable candidate that can overcome the transplant surgeon's enemy. This review discusses pre-treatment of renal grafts and other transplantable organs with H2S to mitigate transplantation-induced IRI in animal models of transplantation. In addition, ethical principles of pre-treatment and potential applications of H2S pre-treatment in the prevention of other IRI-associated conditions are discussed.


Asunto(s)
Sulfuro de Hidrógeno , Trasplante de Riñón , Daño por Reperfusión , Animales , Humanos , Sulfuro de Hidrógeno/farmacología , Riñón/patología , Daño por Reperfusión/patología , Donantes de Tejidos
5.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762319

RESUMEN

The global donor kidney shortage crisis has necessitated the use of suboptimal kidneys from donors-after-cardiac-death (DCD). Using an ex vivo porcine model of DCD kidney transplantation, the present study investigates whether the addition of hydrogen sulfide donor, AP39, to University of Wisconsin (UW) solution improves graft quality. Renal pedicles of male pigs were clamped in situ for 30 min and the ureters and arteries were cannulated to mimic DCD. Next, both donor kidneys were nephrectomized and preserved by static cold storage in UW solution with or without AP39 (200 nM) at 4 °C for 4 h followed by reperfusion with stressed autologous blood for 4 h at 37 °C using ex vivo pulsatile perfusion apparatus. Urine and arterial blood samples were collected hourly during reperfusion. After 4 h of reperfusion, kidneys were collected for histopathological analysis. Compared to the UW-only group, UW+AP39 group showed significantly higher pO2 (p < 0.01) and tissue oxygenation (p < 0.05). Also, there were significant increases in urine production and blood flow rate, and reduced levels of urine protein, serum creatinine, blood urea nitrogen, plasma Na+ and K+, as well as reduced intrarenal resistance in the UW+AP39 group compared to the UW-only group. Histologically, AP39 preserved renal structure by reducing the apoptosis of renal tubular cells and immune cell infiltration. Our finding could lay the foundation for improved graft preservation and reduce the increasingly poor outcomes associated with DCD kidney transplantation.


Asunto(s)
Sulfuro de Hidrógeno , Trasplante de Riñón , Humanos , Masculino , Porcinos , Animales , Sulfuro de Hidrógeno/farmacología , Criopreservación , Mitocondrias
6.
Nitric Oxide ; 120: 16-25, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35032641

RESUMEN

The novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global pandemic which is primarily considered a respiratory illness. However, emerging reports show that the virus exhibits both pulmonary and extra-pulmonary manifestations in humans, with the kidney as a major extra-pulmonary target due to its abundant expression of angiotensin-converting enzyme 2 and transmembrane protease serine 2, which facilitate entry of the virus into cells. Acute kidney injury has become prevalent in COVID-19 patients without prior any history of kidney dysfunction. In addition, the virus also worsens kidney conditions and increases mortality of COVID-19 patients with pre-existing chronic kidney disease, renal cancer, diabetic nephropathy, end-stage kidney disease as well as dialysis and kidney transplant patients. In the search for antiviral agents for the treatment of COVID-19, hydrogen sulfide (H2S), the third established member of gasotransmitter family, is emerging as a potential candidate, possessing important therapeutic properties including antiviral, anti-inflammatory, anti-thrombotic and antioxidant properties. A recent clinical study revealed higher serum H2S levels in survivors of COVID-19 pneumonia with reduced interleukin-6 levels compared to fatal cases. In this review, we summarize the global impact of COVID-19 on kidney conditions and discuss the emerging role of H2S as a potential COVID-19 therapy.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Sulfuro de Hidrógeno/farmacología , Enfermedades Renales/tratamiento farmacológico , SARS-CoV-2/efectos de los fármacos , Antivirales/química , COVID-19/virología , Humanos , Sulfuro de Hidrógeno/química , Enfermedades Renales/virología
7.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614006

RESUMEN

Renal transplantation is the preferred treatment for patients with end-stage renal disease. The current gold standard of kidney preservation for transplantation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal ischemia-reperfusion injury (IRI), a pathological process that negatively impacts graft survival and function. Recent efforts to mitigate cold renal IRI involve preserving renal grafts at higher or subnormothermic temperatures. These temperatures may be beneficial in reducing the risk of cold renal IRI, while also maintaining active biological processes such as increasing the expression of mitochondrial protective metabolites. In this review, we discuss different preservation temperatures for renal transplantation and pharmacological supplementation of kidney preservation solutions with hydrogen sulfide to determine an optimal preservation temperature to mitigate cold renal IRI and enhance renal graft function and recipient survival.


Asunto(s)
Trasplante de Riñón , Daño por Reperfusión , Humanos , Trasplante de Riñón/efectos adversos , Temperatura , Preservación de Órganos , Riñón/metabolismo , Daño por Reperfusión/metabolismo , Frío
8.
Pharmacol Res ; 173: 105883, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34525329

RESUMEN

Carbon monoxide (CO) was historically regarded solely as a poisonous gas that binds to hemoglobin and reduces oxygen-carrying capacity of blood at high concentrations. However, recent findings show that it is endogenously produced in mammalian cells as a by-product of heme degradation by heme oxygenase, and has received a significant attention as a medical gas that influences a myriad of physiological and pathological processes. At low physiological concentrations, CO exhibits several therapeutic properties including antioxidant, anti-inflammatory, anti-apoptotic, anti-fibrotic, anti-thrombotic, anti-proliferative and vasodilatory properties, making it a candidate molecule that could protect organs in various pathological conditions including cold ischemia-reperfusion injury (IRI) in kidney and heart transplantation. Cold IRI is a well-recognized and complicated cascade of interconnected pathological pathways that poses a significant barrier to successful outcomes after kidney and heart transplantation. A substantial body of preclinical evidence demonstrates that CO gas and CO-releasing molecules (CO-RMs) prevent cold IRI in renal and cardiac grafts through several molecular and cellular mechanisms. In this review, we discuss recent advances in research involving the use of CO as a novel pharmacological strategy to attenuate cold IRI in preclinical models of kidney and heart transplantation through its administration to the organ donor prior to organ procurement or delivery into organ preservation solution during cold storage and to the organ recipient during reperfusion and after transplantation. We also discuss the underlying molecular mechanisms of cyto- and organ protection by CO during transplantation, and suggest its clinical use in the near future to improve long-term transplantation outcomes.


Asunto(s)
Monóxido de Carbono/uso terapéutico , Isquemia Fría , Trasplante de Corazón , Trasplante de Riñón , Daño por Reperfusión/prevención & control , Animales , Monóxido de Carbono/farmacología , Humanos , Trasplantes
9.
Pharmacol Res ; 172: 105842, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450311

RESUMEN

Cold ischemia-reperfusion injury (IRI) is an inevitable and unresolved problem that poses a great challenge in solid organ transplantation (SOT). It represents a major factor that increases acute tubular necrosis, decreases graft survival, and delays graft function. This complicates graft quality, post-transplant patient care and organ transplantation outcomes, and therefore undermines the success of SOT. Herein, we review recent advances in research regarding novel pharmacological strategies involving the use of different donor molecules of hydrogen sulfide (H2S), the third established member of the gasotransmitter family, against cold IRI in different experimental models of SOT (kidney, heart, lung, liver, pancreas and intestine). Additionally, we discuss the molecular mechanisms underlying the effects of these H2S donor molecules in SOT, and suggestions for clinical translation. Our reviewed findings showed that storage of donor organs in H2S-supplemented preservation solution or administration of H2S to organ donor prior to organ procurement and to recipient at the start and during reperfusion is a novel, simple and cost-effective pharmacological approach to minimize cold IRI, limit post-transplant complications and improve transplantation outcomes. In conclusion, experimental evidence demonstrate that H2S donors can significantly mitigate cold IRI during SOT through inhibition of a complex cascade of interconnected cellular and molecular events involving microcirculatory disturbance and microvascular dysfunction, mitochondrial injury, inflammatory responses, cell damage and cell death, and other damaging molecular pathways while promoting protective pathways. Translating these promising findings from bench to bedside will lay the foundation for the use of H2S donor molecules in clinical SOT in the future.


Asunto(s)
Isquemia Fría , Sulfuro de Hidrógeno/metabolismo , Trasplante de Órganos , Daño por Reperfusión/tratamiento farmacológico , Animales , Humanos , Modelos Animales , Daño por Reperfusión/metabolismo
10.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208631

RESUMEN

Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these clinical applications and a future perspective in kidney transplantation.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Tiosulfatos/metabolismo , Animales , Hormonas Gastrointestinales/metabolismo , Humanos , Redes y Vías Metabólicas , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo
11.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281230

RESUMEN

The use of blood for normothermic and subnormothermic kidney preservation hinders the translation of these approaches and promising therapeutics. This study evaluates whether adding hydrogen sulfide donor AP39 to Hemopure, a blood substitute, during subnormothermic perfusion improves kidney outcomes. After 30 min of renal pedicle clamping, porcine kidneys were treated to 4 h of static cold storage (SCS-4 °C) or subnormothermic perfusion at 21 °C with Hemopure (H-21 °C), Hemopure + 200 nM AP39 (H200nM-21 °C) or Hemopure + 1 µM AP39 (H1µM-21 °C). Then, kidneys were reperfused with Hemopure at 37 °C for 4 h with metabolic support. Perfusate composition, tissue oxygenation, urinalysis and histopathology were analyzed. During preservation, the H200nM-21 °C group exhibited significantly higher urine output than the other groups and significantly higher tissue oxygenation than the H1µM-21 °C group at 1 h and 2h. During reperfusion, the H200nM-21 °C group exhibited significantly higher urine output and lower urine protein than the other groups. Additionally, the H200nM-21 °C group exhibited higher perfusate pO2 levels than the other groups and significantly lower apoptotic injury than the H-21 °C and the H1µM-21 °C groups. Thus, subnormothermic perfusion at 21 °C with Hemopure + 200 nM AP39 improves renal outcomes. Additionally, our novel blood-free model of ex vivo kidney preservation and reperfusion could be useful for studying other therapeutics.


Asunto(s)
Hemoglobinas , Riñón , Preservación de Órganos/métodos , Compuestos Organofosforados , Reperfusión/métodos , Tionas , Animales , Técnicas In Vitro , Porcinos
12.
Am J Pathol ; 189(9): 1721-1731, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31220449

RESUMEN

Mutations in natriuretic peptide receptor 2 (Npr2) gene cause a rare form of short-limbed dwarfism, but its physiological effects have not been well studied. Human and mouse genetic data suggest that Npr2 in the kidney plays a role in salt homeostasis. Herein, we described anatomic changes within renal papilla of Npr2 knockout (Npr2-/-) mice. Dramatic reduction was found in diuresis, and albuminuria was evident after administration of 1% NaCl in drinking water in Npr2-/- and heterozygous (Npr2+/-) mice compared with their wild-type (Npr2+/+) littermates. There was indication of renal epithelial damage accompanied by high numbers of red blood cells and inflammatory cells (macrophage surface glycoproteins binding to galectin-3) and an increase of renal epithelial damage marker (T-cell Ig and mucin domain 1) in Npr2-/- mice. Addition of 1% NaCl tended to increase apoptotic cells (cleaved caspase 3) in the renal papilla of Npr2-/- mice. In vitro, genetic silencing of the Npr2 abolished protective effects of C-type natriuretic peptide, a ligand for Npr2, against death of M-1 kidney epithelial cells exposed to 360 mmol/L NaCl. Finally, significantly lower levels of expression of the NPR2 protein were detected in renal samples of hypertensive compared with normotensive human subjects. Taken together, these findings suggest that Npr2 is essential to protect renal epithelial cells from high concentrations of salt and prevent kidney injury.


Asunto(s)
Lesión Renal Aguda/prevención & control , Hipertensión/patología , Médula Renal/efectos de los fármacos , Receptores del Factor Natriurético Atrial/fisiología , Cloruro de Sodio/toxicidad , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Animales , Femenino , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Médula Renal/metabolismo , Médula Renal/patología , Masculino , Ratones , Ratones Noqueados
13.
Am J Pathol ; 188(8): 1794-1806, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30033030

RESUMEN

The balance between adaptive and innate immunity in kidney damage in salt-dependent hypertension is unclear. We investigated early renal dysfunction and the influence of Axl, a receptor tyrosine kinase, on innate immune response in hypertensive kidney in mice with lymphocyte deficiency (Rag1-/-). The data suggest that increased presence of CD11b+ myeloid cells in the medulla might explain intensified salt and water retention as well as initial hypertensive response in Rag1-/- mice. Global deletion of Axl on Rag1-/- background reversed kidney dysfunction and accumulation of myeloid cells in the kidney medulla. Chimeric mice that lack Axl in innate immune cells (in the absence of lymphocytes) significantly improved kidney function and abolished early hypertensive response. The bioinformatics analyses of Axl-related gene-gene interaction networks established tissue-specific variation in regulatory pathways. It was confirmed that complement C3 is important for Axl-mediated interactions between myeloid and vascular cells in hypertensive kidney. In summary, innate immunity is crucial for renal dysfunction in early hypertension, and is highly influenced by the presence of Axl.


Asunto(s)
Hipertensión/inmunología , Inmunidad Innata/inmunología , Enfermedades Renales/inmunología , Linfocitos/inmunología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Animales , Células Cultivadas , Complemento C3/metabolismo , Proteínas de Homeodominio/fisiología , Hipertensión/metabolismo , Hipertensión/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Tirosina Quinasa del Receptor Axl
15.
Am J Physiol Renal Physiol ; 314(3): F319-F328, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28566501

RESUMEN

Contrast-induced nephropathy (CIN) is an important complication following diagnostic radiographic imaging and interventional therapy. It results from administration of intravascular iodinated contrast media (CM) and is currently the third most common cause of hospital-acquired acute kidney injury. CIN is associated with increased morbidity, prolonged hospitalization, and higher mortality. Although the importance of CIN is widely appreciated, and its occurrence can be mitigated by the use of pre- and posthydration protocols and low osmolar instead of high osmolar iodine-containing CM, specific prophylactic therapy is lacking. Remote ischemic preconditioning (RIPC), induced through short cycles of ischemia-reperfusion applied to the limb, is an intriguing new strategy that has been shown to reduce myocardial infarction size in patients undergoing emergency percutaneous coronary intervention. Furthermore, multiple proof-of-principle clinical studies have suggested benefit in several other ischemia-reperfusion syndromes, including stroke. Perhaps somewhat surprisingly, RIPC also is emerging as a promising strategy for CIN prevention. In this review, we discuss current clinical and experimental developments regarding the biology of CIN, concentrating on the pathophysiology of CIN, and cellular and molecular mechanisms by which limb ischemic preconditioning may confer renal protection in clinical and experimental models of CIN.


Asunto(s)
Lesión Renal Aguda/prevención & control , Medios de Contraste/efectos adversos , Extremidades/irrigación sanguínea , Precondicionamiento Isquémico/métodos , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Oclusión Terapéutica/métodos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Animales , Humanos , Riñón/metabolismo , Riñón/fisiopatología , Flujo Sanguíneo Regional , Circulación Renal/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
16.
Nitric Oxide ; 64: 52-60, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069557

RESUMEN

Hypertension is the most common cause of cardiovascular morbidities and mortalities, and a major risk factor for renal dysfunction. It is considered one of the causes of chronic kidney disease, which progresses into end-stage renal disease and eventually loss of renal function. Yet, the mechanism underlying the pathogenesis of hypertension and its associated kidney injury is still poorly understood. Moreover, despite existing antihypertensive therapies, achievement of blood pressure control and preservation of renal function still remain a worldwide public health challenge in a subset of hypertensive patients. Therefore, novel modes of intervention are in demand. Hydrogen sulfide (H2S), a gaseous signaling molecule, has been established to possess antihypertensive and renoprotective properties, which may represent an important therapeutic alternative for the treatment of hypertension and kidney injury. This review discusses recent findings about H2S in hypertension and kidney injury from both experimental and clinical studies. It also addresses future direction regarding therapeutic use of H2S.


Asunto(s)
Antihipertensivos/uso terapéutico , Sulfuro de Hidrógeno/uso terapéutico , Hipertensión/complicaciones , Enfermedades Renales , Animales , Humanos , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/etiología , Enfermedades Renales/fisiopatología , Ratones
17.
Nitric Oxide ; 57: 15-20, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27095538

RESUMEN

Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury.


Asunto(s)
Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Sulfuro de Hidrógeno/farmacología , Enfermedades Renales/prevención & control , Sustancias Protectoras/farmacología , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Humanos , Sulfuro de Hidrógeno/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/fisiopatología , Sustancias Protectoras/metabolismo
18.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38539821

RESUMEN

Bladder cancer (BCa) is the most common genitourinary malignancy, with a high global incidence and recurrence rate that is paired with an increasing caregiver burden and higher financial cost, in addition to increasing morbidity and mortality worldwide. Histologically, BCa is categorized into non-muscle invasive, muscle invasive, and metastatic BCa, on the basis of which the therapeutic strategy is determined. Despite all innovations and recent advances in BCa research, conventional therapies such as chemotherapy, immunotherapy, radiotherapy, and surgery fall short in the complete management of this important malignancy. Besides this worrying trend, the molecular basis of BCa development also remains poorly understood. Burgeoning evidence from experimental and clinical studies suggests that oxidative stress resulting from an imbalance between reactive oxygen species (ROS) generation and the body's antioxidant production plays an integral role in BCa development and progression. Hence, ROS-induced oxidative stress-related pathways are currently under investigation as potential therapeutic targets of BCa. This review focuses on our current understanding regarding ROS-associated pathways in BCa pathogenesis and progression, as well as on antioxidants as potential adjuvants to conventional BCa therapy.

19.
Biochem Pharmacol ; 227: 116447, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038553

RESUMEN

Growing clinical evidence shows that sulfonylurea therapy for patients with type 2 diabetic mellitus (T2DM) contributes to progressive worsening of their liver. The present study presents hepatotoxicity induced by gliclazide, a second-generation sulfonylurea, and alpha-lipoic acid (ALA) as a novel and promising drug for T2DM treatment. Normal human liver cells (HL-7702) were incubated with high-glucose DMEM in the presence or absence of gliclazide and ALA for 72 h, and cell viability and death were measured by flow cytometry. Next, Sprague-Dawley rats were subjected to 12 h of fasting, and fasting blood glucose was measured. The rats were randomized into four groups: HC (healthy control; n = 7), T2DM (diabetic rats without treatment; n = 9), GLC (diabetic rats with 15 mg/kg gliclazide treatment; n = 7) and GLC+ALA (diabetic rats with gliclazide and 60 mg/kg ALA treatment; n = 7). T2DM was induced by a bolus administration of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin intraperitoneally. The experimental protocol lasted for 6 weeks after which the animals were sacrificed and pancreas, liver and blood samples were collected for biochemical, histological and molecular analyses. Compared to healthy control (HC) group, exposure of HL-7702 cells to high glucose induced significant cell death by 19 % (p < 0.001), which was exacerbated with gliclazide treatment by 29 % (p < 0.0001) but markedly reduced by 6 % to near HC value following ALA treatment. In vivo, GLC-treated rats had severe liver damage characterized by increased hepatocellular vacuolation, and significant expression of ED-1, iNOS and caspase-3 as well as markedly high levels of liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase compared to T2DM rats. Interestingly, ALA administration prevented these pathological changes and protected the diabetic liver to levels comparable to HC rats. ALA showed hepatoprotective effect against gliclazide-induced hepatotoxicity by suppressing inflammation and apoptosis while activating antioxidant pathway in the diabetic liver. Abbreviations: ALA, Alpha-lipoic acid; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase; ATP, Adenosine triphosphate; DMEM, Dulbecco's Modified Eagle Medium; EDTA, ethylenediaminetetraacetic acid; FBG, Fasting blood glucose; FBS, Fetal bovine serum; GLC, Gliclazide; GLUT4, Glucose transporter type 4; GSH, Glutathione; H&E, Hematoxylin/Eosin; HbA1c, Glycosylated haemoglobin A1c; HC, Healthy control; HG, Hyperglycemic group; HOMA-ß, Homeostasis model assessment of ß-cell function; IL-1ß, Interleukin-1ß; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; KATP, ATP-dependent potassium channels; MDA, Malondialdehyde; MPTP, Mitochondrial permeability transition pore; NO, Nitric oxide; P/S, Penicillin/streptomycin; PAS, Periodic acid-Schiff; RIA, Radioimmunoassay; ROS, Reactive oxygen species; SOD, Superoxide dismutase; T2DM, Type 2 diabetes mellitus; TBARS, Thiobarbituric acid reactive substances; TNF-α, Tumor necrosis factor-alpha.

20.
Biomed Pharmacother ; 167: 115549, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734260

RESUMEN

Lung transplantation is an evolutionary procedure from its experimental origin in the twentieth century and is now recognized as an established and routine life-saving intervention for a variety of end-stage pulmonary diseases refractory to medical management. Despite the success and continuous refinement in lung transplantation techniques, the widespread application of this important life-saving intervention is severely hampered by poor allograft quality offered from donors-after-brain-death. This has necessitated the use of lung allografts from donors-after-cardiac-death (DCD) as an additional source to expand the pool of donor lungs. Remarkably, the lung exhibits unique properties that may make it ideally suitable for DCD lung transplantation. However, primary graft dysfunction (PGD), allograft rejection and other post-transplant complications arising from unavoidable ischemia-reperfusion injury (IRI) of transplanted lungs, increase morbidity and mortality of lung transplant recipients annually. In the light of this, nitric oxide (NO), a selective pulmonary vasodilator, has been identified as a suitable agent that attenuates lung IRI and prevents PGD when administered directly to lung donors prior to donor lung procurement, or to recipients during and after transplantation, or administered indirectly by supplementing lung preservation solutions. This review presents a historical account of clinical lung transplantation and discusses the lung as an ideal organ for DCD. Next, the author highlights IRI and its clinical effects in lung transplantation. Finally, the author discusses preservation solutions suitable for lung transplantation, and the protective effects and mechanisms of NO in experimental and clinical lung transplantation.


Asunto(s)
Trasplante de Pulmón , Obtención de Tejidos y Órganos , Humanos , Óxido Nítrico , Trasplante de Pulmón/efectos adversos , Donantes de Tejidos , Muerte , Pulmón , Supervivencia de Injerto , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda