Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Toxicon X ; 21: 100187, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38404947

RESUMEN

As injectable therapeutics, snake antivenoms must meet specifications for endotoxin content. The Limulus amebocyte lysate (LAL) test was used to evaluate the endotoxin content in several commercially available antivenoms released for clinical use. It was found that some products have endotoxin concentrations higher than the accepted limit for these contaminants. These results emphasize the need to include endotoxin determination as part of the routine evaluation of antivenoms by manufacturers and regulatory agencies.

2.
Toxicon X ; 22: 100195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606385

RESUMEN

Mice are routinely used in snake venom research but are costly and subject to pain and suffering. The crustacean Artemia salina could be an alternative to mice, but data to support its adoption in snake venom research is limited. The aim of the present study was to evaluate the suitability of A. salina as a surrogate of mice in assessing the toxicity of venoms and the preclinical efficacy of antivenoms. The toxicity of venoms from 22 snakes of medical importance in sub-Saharan Africa was evaluated in mice (intraperitoneally; i.p. and intravenously; i.v.) and in A. salina. Subsequently, the capacity of a commercial antivenom to neutralize the toxicity of these venoms in mice and A. salina was investigated. There was a positive correlation between the i.v. median lethal doses (LD50s) and the i.p. LD50s in mice (r = 0.804; p < 0.0001), a moderate correlation between the i.v. LD50s in mice and the median lethal concentrations (LC50s) in A. salina (r = 0.606; p = 0.003), and a moderate correlation between the i.p. LD50s in mice and the LC50s in A. salina (r = 0.426; p = 0.048). Moreover, there was a strong correlation between the i.p. median effective doses (ED50s) and the i.v. ED50s in mice (r = 0.941, p < 0.0001), between the i.p. ED50s in mice and the ED50s in A. salina (r = 0.818, p < 0.0001), and between the i.v. ED50s in mice and the ED50s in A. salina (r = 0.972, p < 0.0001). These findings present A. salina as a promising candidate for reducing reliance on mice in snake venom research. Future investigations should build upon these findings, addressing potential limitations and expanding the scope of A. salina in venom research and antivenom development.

3.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38809847

RESUMEN

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Animales , Caballos/inmunología , Antivenenos/inmunología , Antivenenos/administración & dosificación , Ratones , África del Sur del Sahara , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Venenos de Serpiente/inmunología , Sueros Inmunes/inmunología , Venenos Elapídicos/inmunología , Mordeduras de Serpientes/inmunología
4.
Toxicon X ; 21: 100183, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38274651

RESUMEN

Snakebite envenomation is a neglected tropical disease posing a high toll of mortality and morbidity in sub-Saharan Africa. Polyspecific antivenoms of broad effectiveness and specially designed for this region require a detailed understanding of the immunological features of the mamba snake (Dendroaspis spp.) venoms for the selection of the most appropriate antigen combination to produce antivenoms of wide neutralizing scope. Monospecific antisera were generated in rabbits against the venoms of the four species of mambas. The toxic effects of the immunization scheme in the animals were evaluated, antibody titers were estimated using immunochemical assays, and neutralization of lethal activity was assessed. By the end of the immunization schedule, rabbits showed normal values of the majority of hematological parameters tested. No muscle tissue damage was noticed, and no alterations in most serum chemical parameters were observed. Immunological analyses revealed a variable extent of cross-reactivity of the monospecific antisera against the heterologous venoms. The venoms of D. jamesoni and D. viridis generated the antisera with broader cross-reactivity by immunochemical parameters. The venoms of D. polylepis and D. viridis generated the antisera with better cross-neutralization of lethality, although the neutralizing ability of all antisera was lower than 0.16 mg venom/mL antiserum against either homologous or heterologous venoms. These experimental results must be scaled to large animal models used in antivenom manufacture at industrial level to assess whether these predictions are reproducible.

5.
Toxicon X ; 23: 100202, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246647

RESUMEN

The performance of dynamic body-feed filtration (DBF) in the removal of bulky solids produced during the manufacturing of snake antivenoms using the caprylic acid method was evaluated. For this purpose, diatomites with different filterability properties were compared in a bench-scale study to assess their effectiveness in removing the precipitated material formed after the addition of caprylic acid to equine hyperimmune plasma. C1000 diatomite at a concentration of 90 g/L of precipitated plasma showed the best performance. Then, the process was scaled up to three batches of 50 L of hyperimmune horse plasma. At this pilot scale, 108 ± 4% of the immunoglobulins present following plasma precipitation were recovered after DBF. The antivenoms generated using this procedure met quality specifications. When compared to open filtration systems commonly used at an industrial scale by many antivenom manufacturers, DBF has a similar yield and produces filtrates with comparable physicochemical characteristics. However, DBF ensures the microbiological quality of the primary clarification in a way that open systems cannot. This is because: 1) DBF is performed in a single-use closed device of depth filters which prevents microbial contamination, and 2) DBF removes bulky material in few minutes instead of the more than 24 h needed by open filtration systems, thus reducing the risk of contamination. It was concluded that DBF is a cost-effective, easily validated, and GMP-compliant alternative for primary clarification following caprylic acid precipitation of plasma in snake antivenom production.

6.
Toxicon X ; 24: 100206, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39290878

RESUMEN

Snakebite in the Middle East and North Africa (MENA) is a public health problem whose magnitude is not fully known. Several antivenoms are available in these regions, but these formulations are designed for restricted geographical settings. Many countries do not have local production of antivenoms and must access products whose clinical performance has not been demonstrated. We hypothesize that it is possible to unify the treatment for viperid snakebites of MENA in a single antivenom formulation. Hereby we describe the design, development and preclinical evaluation of an antivenom of broad geographical coverage for this region (MENAVip-ICP). We produced this antivenom from the plasma of horses immunized with eight medically important venoms of viperid snake species from MENA. For this, we used a strategy based on two stages: first, immunization of horses with North African (NA) venoms, followed by a second immunization stage, on the same horses, with MENA venoms. We purified antivenoms from both stages: the Anti-NA and the final product Anti-MENA (MENAVip-ICP). Anti-NA was considered as intermediate formulation and was purified with the intention to study the progression of the immunoglobulin immune response of the horses. Antivenoms from both stages neutralized lethal, hemorrhagic, and procoagulant activities of homologous venoms. Compared to Anti-NA, MENAVip-ICP improved the neutralization profile of intravenous lethality and in vitro procoagulant activities of venoms. A notable finding was the difference in the neutralization of lethality when MENAVip-ICP was assessed intraperitoneally versus intravenously in the murine model. Intraperitoneally, MENAVip-ICP appears more effective in neutralizing the lethality of all venoms. Furthermore, MENAVip-ICP neutralized the lethal activity of venoms of species from other regions of MENA, Central/East Asia, and Sub-Saharan Africa that were not included in the immunization protocol. Our results showed that MENAVip-ICP neutralizes the main toxic activities induced by viperid MENA venoms at the preclinical level. Consequently, it is a promising product that could be clinically assessed for the treatment of snakebite envenomings in this region.

7.
BMJ Glob Health ; 9(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38485142

RESUMEN

INTRODUCTION: Antivenom is a lifesaving medicine for treating snakebite envenoming, yet there has been a crisis in antivenom supply for many decades. Despite this, substantial quantities of antivenom stocks expire before use. This study has investigated whether expired antivenoms retain preclinical quality and efficacy, with the rationale that they could be used in emergency situations when in-date antivenom is unavailable. METHODS: Using WHO guidelines and industry test requirements, we examined the in vitro stability and murine in vivo efficacy of eight batches of the sub-Saharan African antivenom, South African Institute for Medical Research polyvalent, that had expired at various times over a period of 30 years. RESULTS: We demonstrate modest declines in immunochemical stability, with antivenoms older than 25 years having high levels of turbidity. In vitro preclinical analysis demonstrated all expired antivenoms retained immunological recognition of venom antigens and the ability to inhibit key toxin families. All expired antivenoms retained comparable in vivo preclinical efficacy in preventing the lethal effects of envenoming in mice versus three regionally and medically important venoms. CONCLUSIONS: This study provides strong rationale for stakeholders, including manufacturers, regulators and health authorities, to explore the use of expired antivenom more broadly, to aid in alleviating critical shortages in antivenom supply in the short term and the extension of antivenom shelf life in the longer term.


Asunto(s)
Antivenenos , Mordeduras de Serpientes , Ratones , Humanos , Animales , Antivenenos/uso terapéutico , Mordeduras de Serpientes/tratamiento farmacológico , Ponzoñas/uso terapéutico
8.
PLoS Negl Trop Dis ; 17(8): e0011545, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37582064

RESUMEN

BACKGROUND: Envenomations by African snakes represent a high burden in the sub-Sahara region. The design and fabrication of polyspecific antivenoms with a broader effectiveness, specially tailored for its use in sub-Saharan Africa, require a better understanding of the immunological features of different Naja spp. venoms of highest medical impact in Africa; and to select the most appropriate antigen combinations to generate antivenoms of wider neutralizing scope. METHODOLOGY/PRINCIPAL FINDINGS: Rabbit-derived monospecific antisera were raised against the venoms of five spitting cobras and six non-spitting cobras. The effects of immunization in the animal model were assessed, as well as the development of antibody titers, as proved by immunochemical assays and neutralization of lethal, phospholipase A2 and dermonecrotic activities. By the end of the immunization schedule, the immunized rabbits showed normal values of all hematological parameters, and no muscle tissue damage was evidenced, although alterations in aspartate aminotransferase (AST) and alkaline phosphatase (ALP) suggested a degree of hepatic damage caused mainly by spitting cobra venoms. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within the spitting and no-spitting cobras, yet some antisera showed more extensive cross-reactivity than others. The antisera with the widest coverage were those of anti-Naja ashei and anti-N. nigricollis for the spitting cobras, and anti-N. haje and anti-N. senegalensis for the non-spitting cobras. CONCLUSIONS/SIGNIFICANCE: The methods and study design followed provide a rationale for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against cobra venoms in sub-Saharan Africa. Results suggest that venoms from N. ashei, N. nigricollis within the spitting cobras, and N. haje and N. senegalensis within the non-spitting cobras, generate antisera with a broader cross-reactivity. These experimental results should be translated to larger animal models used in antivenom elaboration to assess whether these predictions are reproduced.


Asunto(s)
Lagomorpha , Naja , Animales , Conejos , Elapidae , Antivenenos/farmacología , Sueros Inmunes , Venenos Elapídicos
9.
PLoS Negl Trop Dis ; 16(8): e0010643, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960772

RESUMEN

BACKGROUND: Snakebite envenomation exerts a heavy toll in sub-Saharan Africa. The design and production of effective polyspecific antivenoms for this region demand a better understanding of the immunological characteristics of the different venoms from the most medically important snakes, to select the most appropriate venom combinations for generating antivenoms of wide neutralizing scope. Bitis spp. and Echis spp. represent the most important viperid snake genera in Africa. METHODOLOGY/PRINCIPAL FINDINGS: Eight rabbit-derived monospecific antisera were raised against the venoms of four species of Bitis spp. and four species of Echis spp. The effects of immunization in the rabbits were assessed, as well as the development of antibody titers, as judged by immunochemical assays and neutralization of lethal, hemorrhagic, and in vitro coagulant effects. At the end of immunizations, local and pulmonary hemorrhage, together with slight increments in the plasma activity of creatine kinase (CK), were observed owing to the action of hemorrhagic and myotoxic venom components. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within each genus, although some antisera provided a more extensive cross-reactivity than others. The venoms that generated antisera with the broadest coverage were those of Bitis gabonica and B. rhinoceros within Bitis spp. and Echis leucogaster within Echis spp. CONCLUSIONS/SIGNIFICANCE: The methodology followed in this study provides a rational basis for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against viperid venoms in sub-Saharan Africa. Results suggest that the venoms of B. gabonica, B. rhinoceros, and E. leucogaster generate antisera with the broadest cross-reactivity within their genera. These experimental results in rabbits need to be translated to large animals used in antivenom production to assess whether these predictions are reproduced in horses or sheep.


Asunto(s)
Viperidae , África del Sur del Sahara , Animales , Antivenenos , Hemorragia , Caballos , Sueros Inmunes , Conejos , Ovinos , Venenos de Serpiente , Serpientes
10.
Vaccine X ; 12: 100233, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36337837

RESUMEN

Adjuvant emulsions are widely used to enhance the antibody response in animals used as immunoglobulin source to produce snake antivenoms. We tested the performance of four commercial emulsion adjuvants (Montanide, Freund, Carbigen, and Emulsigen-D) and an experimental adjuvant (QH-769) in the antibody response of horses towards venoms of the African snakes Bitis arietans, Echis ocellatus, Dendroaspis polylepis and Naja nigricollis. Montanide, Freund and Carbigen adjuvants generated the highest immune response but induced moderate/severe local lesions at the site of injection. In contrast, Emulsigen-D and QH-769 adjuvants generated the lowest immune response and low incidence of local lesions. No evidence of systemic alterations was observed in the horses immunized with any of the adjuvants. It is suggested that the use of Montanide or Freund-based emulsions in the first immunization steps, followed by the use of Emulsigen-D, QH-769 or similar adjuvants in the following injections, could result in a satisfactory immune response against snake venoms, while not inducing serious local deleterious effects.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda