Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Technol ; 35(9-12): 1358-66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24701934

RESUMEN

Nitrogen monoxide (NO) and nitrogen dioxide referred as NOx are one of the most important air pollutants in the atmosphere. Biological NOx removal technologies have been developing to reach a cost-effective control method for upcoming stringent NOx emission standards. The BioDeNOx system was seen as a promising biological NOx control technology which is composed of two reactors, one for absorbing of NO in an aqueous Fe(II)EDTA2- solution and the other for subsequent reduction to N2 gas in a biological reactor by the denitrification process. In this study, instead of two discrete reactors, only one jet-loop bioreactor (JLBR) was utilized as both absorption and denitrification unit and no chelate-forming chemicals were added. In other words, the advantage of better mass transfer conditions of jet bioreactor was used instead of Fe(II)EDTA2-. The process was named as Jet-BioDeNOx. The JLBR was operated for the removal of NOx from air streams containing 500-3000 ppm NOx and the results showed that the removal efficiency was between 81% and 94%. The air to liquid flow ratio (Q(G)/Q(RAS)) varied in the range of 0.07-0.12. Mathematical modelling of the system demonstrated that the removal efficiency strongly depends on this ratio. The high mass transfer conditions prevailed in the reactor provided a competitive advantage on removing NO gas without any requirement of chelating chemicals.


Asunto(s)
Reactores Biológicos , Desnitrificación , Modelos Teóricos , Óxidos de Nitrógeno/aislamiento & purificación , Reactores Biológicos/microbiología , Oxígeno/administración & dosificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda