Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Genet ; 5(3): 254-8, 1993 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8275090

RESUMEN

Spinocerebellar ataxia type I (SCAI) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat on chromosome 6p. Normal alleles range from 19-36 repeats while SCA1 alleles contain 43-81 repeats. We now show that in 63% of paternal transmissions, an increase in repeat number is observed, whereas 69% of maternal transmissions showed no change or a decrease in repeat number. Sequence analysis of the repeat from 126 chromosomes reveals an interrupted repeat configuration in 98% of the unexpanded alleles but a contiguous repeat (CAG)n configuration in 30 expanded alleles from seven SCA1 families. This indicates that the repeat instability in SCA1 is more complex than a simple variation in repeat number and that the loss of an interruption predisposes the SCA1 (CAG)n to expansion.


Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos , Degeneraciones Espinocerebelosas/genética , Secuencia de Bases , Línea Celular , Cromosomas Humanos Par 6 , ADN , Cartilla de ADN , Genes Dominantes , Variación Genética , Humanos , Datos de Secuencia Molecular
2.
Nat Genet ; 7(4): 513-20, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7951322

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat. In this study, we describe the identification and characterization of the gene harbouring this repeat. The SCA1 transcript is 10,660 bases and is transcribed from both the wild type and SCA1 alleles. The CAG repeat, coding for a polyglutamine tract, lies within the coding region. The gene spans 450 kb of genomic DNA and is organized in nine exons. The first seven fall in the 5' untranslated region and the last two contain the coding region, and a 7,277 basepairs 3' untranslated region. The first four non-coding exons undergo alternative splicing in several tissues. These features suggest that the transcriptional and translational regulation of ataxin-1, the SCA1 encoded protein, may be complex.


Asunto(s)
Genes , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Degeneraciones Espinocerebelosas/genética , Empalme Alternativo , Secuencia de Aminoácidos , Ataxina-1 , Ataxinas , Secuencia de Bases , Mapeo Cromosómico , ADN/genética , Cartilla de ADN/genética , Exones , Humanos , Intrones , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Degeneraciones Espinocerebelosas/clasificación
3.
Nat Genet ; 4(3): 221-6, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8358429

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder characterized by neurodegeneration of the cerebellum, spinal cord and brainstem. A 1.2-Megabase stretch of DNA from the short arm of chromosome 6 containing the SCA1 locus was isolated in a yeast artificial chromosome contig and subcloned into cosmids. A highly polymorphic CAG repeat was identified in this region and was found to be unstable and expanded in individuals with SCA1. There is a direct correlation between the size of the (CAG)n repeat expansion and the age-of-onset of SCA1, with larger alleles occurring in juvenile cases. We also show that the repeat is present in a 10 kilobase mRNA transcript. SCA1 is therefore the fifth genetic disorder to display a mutational mechanism involving an unstable trinucleotide repeat.


Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos , Degeneraciones Espinocerebelosas/genética , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Humanos Par 6 , Clonación Molecular , ADN/genética , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/genética , Linaje , Reacción en Cadena de la Polimerasa , Transcripción Genética
4.
Neurology ; 42(2): 344-7, 1992 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-1736163

RESUMEN

SCA1 is an adult-onset autosomal dominant ataxia that is genetically linked to loci on chromosome 6p. A highly informative GT-repeat marker, D6S89, has been closely linked to the SCA1 locus in five large kindreds. We have used this marker to perform linkage analysis in a smaller autosomal dominant ataxia family consisting of five generations designated as the Nebraska kindred. This kindred includes 33 affected (12 living) and 40 first-generation at-risk individuals. We examined eight affected individuals; all had gait and limb ataxia. We analyzed the D6S89 locus by the polymerase chain reaction. Based on the analysis of 31 individuals from this kindred, we statistically excluded linkage to D6S89 for moderate-to-tight linkage (less than 11% recombination). These data clearly demonstrate genetic heterogeneity among the autosomal dominant ataxias. In addition, we obtained linkage data for HLA-A and SCA1 in this kindred. Comparison of HLA-A with D6S89 shows the latter marker to be more powerful. Use of D6S89 and other highly polymorphic markers in this region will greatly facilitate genetic classification of ataxias and make presymptomatic diagnosis of SCA1 feasible.


Asunto(s)
Ligamiento Genético , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Mapeo Cromosómico , Femenino , Genes Dominantes , Marcadores Genéticos , Antígenos HLA/genética , Humanos , Masculino , Persona de Mediana Edad , Nebraska , Linaje
5.
Hum Mol Genet ; 8(9): 1657-64, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10441328

RESUMEN

Spinocerebellar ataxia type 7 (SCA7) belongs to a group of neurological disorders caused by a CAG repeat expansion in the coding region of the associated gene. To gain insight into the pathogenesis of SCA7 and possible functions of ataxin-7, we examined the subcellular localization of ataxin-7 in transfected COS-1 cells using SCA7 cDNA clones with different CAG repeat tract lengths. In addition to a diffuse distribution throughout the nucleus, ataxin-7 associated with the nuclear matrix and the nucleolus. The location of the putative SCA7 nuclear localization sequence (NLS) was confirmed by fusing an ataxin-7 fragment with the normally cytoplasmic protein chicken muscle pyruvate kinase. Mutation of this NLS prevented protein from entering the nucleus. Thus, expanded ataxin-7 may carry out its pathogenic effects in the nucleus by altering a matrix-associated nuclear structure and/or by disrupting nucleolar function.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Ataxina-7 , Células COS , Técnica del Anticuerpo Fluorescente , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Señales de Localización Nuclear/genética , Matriz Nuclear/metabolismo , Proteína de la Leucemia Promielocítica , Piruvato Quinasa/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ataxias Espinocerebelosas/genética , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor
6.
Hum Mol Genet ; 6(4): 513-8, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9097953

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine tract within the SCA1 gene product, ataxin-1. Expansion of this tract is believed to result in a gain of function by the mutant protein, perhaps through altered self-associations or interactions with other cellular proteins. We have used the yeast two hybrid system to determine if ataxin-1 is capable of multimerization. This analysis revealed that ataxin-1 does have the ability to self-associate, however, this association does not appear to be influenced by expansion of the polyglutamine tract. Consistent with this finding, deletion analysis excluded the involvement of the polyglutamine tract in ataxin-1 self-association, and instead localized the multimerization region to amino acids 495-605 of the wild type protein. These results, while identifying an ataxin-1 self-interaction region, fail to support a proposed model of polar-zipper mediated multimerization involving the ataxin-1 polyglutamine tract.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Animales , Ataxina-1 , Ataxinas , Clonación Molecular , Cartilla de ADN , Biblioteca de Genes , Genes Reporteros , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Transformación Genética , Levaduras , beta-Galactosidasa/metabolismo
7.
Am J Hum Genet ; 49(1): 31-41, 1991 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-1676561

RESUMEN

Two large kindreds with HLA-linked, autosomal dominant spinocerebellar ataxia (SCA1) were examined with markers from chromosome 6p to determine the location of the SCA1 locus. Results of the three-point analysis between the markers HLA-A, SCA1, and F13A overwhelmingly favor the conclusion that SCA1 is located distal of HLA and proximal of F13A. In addition, our data strongly support the conclusion that SCA1 lies centromeric and genetically very close to the highly informative D6S89 marker within the 8-cM chromosomal segment flanked by the D6S88 and D6S89 markers. In the two kindreds, one recombinant was observed between D6S89 and SCA1, resulting in a recombination fraction of .014 between the two loci.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 6 , Genes Dominantes/genética , Ligamiento Genético , Antígenos HLA-A/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Marcadores Genéticos , Humanos , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
8.
Hum Mol Genet ; 6(12): 2135-9, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9328478

RESUMEN

Nucleotide repeat instability is associated with an increasing number of cancers and neurological disorders. The mechanisms that govern repeat instability in these biological disorders are not well understood. To examine genetic aspects of repeat instability we have introduced an expanded CAG trinucleotide repeat into transgenic mice. We have detected intergenerational CAG repeat instability in transgenic mice only when the transgene was maternally transmitted. These intergenerational instabilities increased in frequency and magnitude as the transgenic mother aged. Furthermore, triplet repeat variations were detected in unfertilized oocytes and were comparable with those in the offspring. These data show that maternal repeat instability in the transgenic mice occurs after meiotic DNA replication and prior to oocyte fertilization. Thus, these findings demonstrate that advanced maternal age is an important factor for instability of nucleotide repeats in mammalian DNA.


Asunto(s)
Edad Materna , Repeticiones de Trinucleótidos/fisiología , Adenina , Animales , Ataxina-1 , Ataxinas , Cruzamiento , Citosina , Femenino , Guanina , Masculino , Ratones , Ratones Endogámicos , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Oogénesis/genética
9.
Hum Mol Genet ; 9(15): 2305-12, 2000 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-11001934

RESUMEN

Expansion of a polyglutamine tract within ataxin-1 causes spinocerebellar ataxia type 1 (SCA1). In this study, we used the yeast two-hybrid system to identify an ataxin-1-interacting protein, A1Up. A1Up localized to the nucleus and cytoplasm of transfected COS-1 cells. In the nucleus, A1Up co-localized with mutant ataxin-1, further demonstrating that A1Up interacts with ataxin-1. Expression analyses demonstrated that A1U mRNA is widely expressed as an approximately 4.0 kb transcript and is present in Purkinje cells, the primary site of SCA1 cerebellar pathology. Sequence comparisons revealed that A1Up contains an N-terminal ubiquitin-like (UbL) region, placing it within a large family of similar proteins. In addition, A1Up has substantial homology to human Chap1/Dsk2, a protein that binds the ATPase domain of the HSP70-like Stch protein. These results suggest that A1Up may link ataxin-1 with the chaperone and ubiquitin-proteasome pathways. In addition, these data support the concept that ataxin-1 may function in the formation and regulation of multimeric protein complexes within the nucleus.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitinas/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Ataxina-1 , Ataxinas , Proteínas Relacionadas con la Autofagia , Northern Blotting , Encéfalo/metabolismo , Células COS , Técnica del Anticuerpo Fluorescente , Humanos , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , Unión Proteica , ARN Mensajero/análisis , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
10.
Am J Hum Genet ; 53(2): 391-400, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8101039

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder which is genetically linked to the short arm of chromosome 6, telomeric to the human major histocompatibility complex (HLA) and very close to D6S89. Previous multipoint linkage analysis using HLA, D6S89, and SCA1 suggested that SCA1 maps centromeric to D6S89. Data from this study using nine large kindreds indicate a maximum lod score between SCA1 and D6S89 of 67.58 at a maximum recombination fraction of .004. To localize SCA1 more precisely, we identified five dinucleotide polymorphisms near D6S89. Genotypic analyses at these polymorphic loci were carried out in nine multigeneration SCA1 kindreds and in the Centre d'Etude du Polymorphisme Humain reference families. A new marker, AM10GA, demonstrates no recombination with SCA1. The maximum lod score for AM10GA linkage to SCA1 is 42.14 at a recombination fraction of 0. Linkage analysis and analysis of recombination events confirm that SCA1 maps centromeric to D6S89 and establish the following order: CEN-D6S109-AM10GA/SCA1-D6S89-LR40-D6S20 2-TEL.


Asunto(s)
Cromosomas Humanos Par 6 , Recombinación Genética , Degeneraciones Espinocerebelosas/genética , Adulto , Alelos , Secuencia de Bases , Centrómero , Niño , Mapeo Cromosómico/métodos , Clonación Molecular , Ligamiento Genético , Marcadores Genéticos , Humanos , Escala de Lod , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN
11.
J Immunol ; 151(5): 2633-45, 1993 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-8360483

RESUMEN

Trophoblast, the only fetal tissue in direct contact with maternal cells, fails to express the polymorphic HLA class I molecules HLA-A and -B, but does express the nonpolymorphic class I molecule HLA-G. It is thought that HLA-G may provide some of the functions of a class I molecule without stimulating maternal immune rejection of the fetal semiallograft. As a first step in identifying the cis-acting DNA regulatory elements involved in the control of class I expression by extraembryonic tissue, several types of transgenic mice were produced. Two HLA-G genomic fragments were used, 5.7 and 6.0 kb in length. These included the entire HLA-G coding region, 1 kb of 3' flanking sequence, and 1.2 or 1.4 kb of 5' flanking sequence, respectively. A hybrid transgene, HLA-A2/G, was produced by replacing the 5' flanking sequence, first exon, and early first intron of HLA-G with the corresponding elements of HLA-A. Comparison of transgene mRNA expression patterns seen in HLA-A2/G and HLA-G transgenic mice suggests that 5' flanking sequences are largely responsible for the differing patterns of expression typical of the classical class I and HLA-G genes. Studies comparing the extraembryonic HLA-G expression levels of founder embryos transgenic for either the 5.7- or 6.0-kb HLA-G transgene showed that the 6.0-kb transgene directed HLA-G expression far more efficiently than did the 5.7-kb HLA-G transgene, producing extraembryonic HLA-G mRNA levels similar to those seen in human extraembryonic tissues. The results of these studies suggest that the 250-bp fragment present at the extreme 5' end of the 6.0-kb HLA-G transgene and absent from the 5.7-kb HLA-G transgene contains an important positive regulatory element. This 250-bp fragment lies further upstream than any of the previously documented class I regulatory regions and may function as a locus control region.


Asunto(s)
Genes MHC Clase I , Genes Reguladores , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase I/genética , Animales , Secuencia de Bases , Embrión de Mamíferos/metabolismo , Femenino , Expresión Génica , Antígenos HLA-G , Humanos , Masculino , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , ARN Mensajero/análisis , Transcripción Genética
12.
Am J Hum Genet ; 55(2): 244-52, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8037204

RESUMEN

The spinocerebellar ataxias are a group of debilitating neurodegenerative diseases for which a clinical classification system has proved unreliable. We have recently isolated the gene for spinocerebellar ataxia type 1 (SCA1) and have shown that the disease is caused by an expanded, unstable, CAG trinucleotide repeat within an expressed gene. Normal alleles have a size range of 19-36 repeats, while SCA1 alleles have 42-81 repeats. In this study, we examined the frequency and variability of the SCA1 repeat expansion in 87 kindreds with diverse ethnic backgrounds and dominantly inherited ataxia. All nine families for which linkage to the SCA1 region of 6p had previously been established showed repeat expansion, while 3 of the remaining 78 showed a similar abnormality. For 113 patients from the families with repeat expansion, inverse correlations between CAG repeat size and both age at onset and disease duration were observed. Repeat size accounted for 66% of the variation in age at onset in these patients. After correction for repeat size, interfamilial differences in age at onset remained significant, suggesting that additional genetic factors affect the expression of the SCA1 gene product.


Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Edad de Inicio , Secuencia de Bases , Niño , Cromosomas Humanos Par 6 , ADN/análisis , Cartilla de ADN , Salud de la Familia , Femenino , Expresión Génica , Genes Dominantes , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Análisis Multivariante , Fenotipo , Reacción en Cadena de la Polimerasa , Degeneraciones Espinocerebelosas/patología
13.
Cell ; 82(6): 937-48, 1995 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-7553854

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant inherited disorder characterized by degeneration of cerebellar Purkinje cells, spinocerebellar tracts, and selective brainstem neurons owing to the expansion of an unstable CAG trinucleotide repeat. To gain insight into the pathogenesis of the SCA1 mutation and the intergenerational stability of trinucleotide repeats in mice, we have generated transgenic mice expressing the human SCA1 gene with either a normal or an expanded CAG tract. Both transgenes were stable in parent to offspring transmissions. While all six transgenic lines expressing the unexpanded human SCA1 allele had normal Purkinje cells, transgenic animals from five of six lines with the expanded SCA1 allele developed ataxia and Purkinje cell degeneration. These data indicate that expanded CAG repeats expressed in Purkinje cells are sufficient to produce degeneration and ataxia and demonstrate that a mouse model can be established for neurodegeneration caused by CAG repeat expansions.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Degeneraciones Espinocerebelosas/genética , Animales , Ataxina-1 , Ataxinas , Secuencia de Bases , Cerebelo/patología , Expresión Génica/genética , Inmunohistoquímica , Ratones , Datos de Secuencia Molecular , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fenotipo , Células de Purkinje/fisiología , ARN Mensajero/análisis
14.
Hum Mol Genet ; 5(1): 33-40, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8789437

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat which encodes glutamine in the novel protein ataxin-1. In order to characterize the developmental expression pattern of SCA1 and to identify putative functional domains in ataxin-1, the murine homolog (Sca1) was isolated. Cloning and characterization of the murine Sca1 gene revealed that the gene organization is similar to that of the human gene. The murine and human ataxin-1 are highly homologous but the CAG repeat is virtually absent in the mouse sequence suggesting that the polyglutamine stretch is not essential for the normal function of ataxin-1 in mice. Cellular and developmental expression of the murine homolog was examined using RNA in situ hybridization. During cerebellar development, there is a transient burst of Sca1 expression at postnatal day 14 when the murine cerebellar cortex becomes physiologically functional. There is also marked expression of Sca1 in mesenchymal cells of the intervertebral discs during development of the spinal column. These results suggest that the normal Sca1 gene, has a role at specific stages of both cerebellar and vertebral column development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Homología de Secuencia de Ácido Nucleico , Degeneraciones Espinocerebelosas/genética , Repeticiones de Trinucleótidos/genética , Secuencia de Aminoácidos , Animales , Ataxina-1 , Ataxinas , Secuencia de Bases , Corteza Cerebral/química , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Embrionario y Fetal , Humanos , Disco Intervertebral/citología , Disco Intervertebral/embriología , Mesodermo/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos CBA , Datos de Secuencia Molecular , Células de Purkinje/química , ARN Mensajero/análisis , Alineación de Secuencia , Médula Espinal/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda