Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Appl Environ Microbiol ; 82(24): 7019-7029, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27663031

RESUMEN

The tailings of the Shimen realgar mine have unique geochemical features. Arsenite oxidation is one of the major biogeochemical processes that occurs in the tailings. However, little is known about the functional and molecular aspects of the microbial community involved in arsenite oxidation. Here, we fully explored the functional and molecular features of the microbial communities from the tailings of the Shimen realgar mine. We collected six samples of tailings from sites A, B, C, D, E, and F. Microcosm assays indicated that all of the six sites contain both chemoautotrophic and heterotrophic arsenite-oxidizing microorganisms; their activities differed considerably from each other. The microbial arsenite-oxidizing activities show a positive correlation with soluble arsenic concentrations. The microbial communities of the six sites contain 40 phyla of bacteria and 2 phyla of archaea that show extremely high diversity. Soluble arsenic, sulfate, pH, and total organic carbon (TOC) are the key environmental factors that shape the microbial communities. We further identified 114 unique arsenite oxidase genes from the samples; all of them code for new or new-type arsenite oxidases. We also isolated 10 novel arsenite oxidizers from the samples, of which 4 are chemoautotrophic and 6 are heterotrophic. These data highlight the unique diversities of the arsenite-oxidizing microorganisms and their oxidase genes from the tailings of the Shimen realgar mine. To the best of our knowledge, this is the first report describing the functional and molecular features of microbial communities from the tailings of a realgar mine. IMPORTANCE: This study focused on the functional and molecular characterizations of microbial communities from the tailings of the Shimen realgar mine. We fully explored, for the first time, the arsenite-oxidizing activities and the functional gene diversities of microorganisms from the tailings, as well as the correlation of the microbial activities/diversities with environmental factors. The findings of this study help us to better understand the diversities of the arsenite-oxidizing bacteria and the geochemical cycle of arsenic in the tailings of the Shimen realgar mine and gain insights into the microbial mechanisms by which the secondary minerals of the tailings were formed. This work also offers a set of unique arsenite-oxidizing bacteria for basic research of the molecular regulation of arsenite oxidation in bacterial cells and for the environmentally friendly bioremediation of arsenic-contaminated groundwater.


Asunto(s)
Archaea/genética , Archaea/metabolismo , Arsenitos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Variación Genética , Archaea/clasificación , Archaea/aislamiento & purificación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Minería , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia
2.
Front Oncol ; 14: 1392899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715787

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2019.00033.].

3.
Brain Res Bull ; 192: 36-46, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334804

RESUMEN

OBJECTIVE: Bisphosphoglycerate mutase (BPGM) is expressed in human erythrocytes and responsible for the production of 2,3-bisphosphoglycerate (2,3-DPG). However, the expression and role of BPGM in other cells have not been reported. In this work, we found that BPGM was significantly upregulated in astrocytes upon acute hypoxia, and the role of this phenomenon will be clarified in the following report. METHODS: The mRNA and protein expression levels of BPGM and the content of 2,3-DPG with hypoxia treatment were determined in vitro and in vivo. Furthermore, glycolysis was evaluated upon in hypoxic astrocytes with BPGM knockdown and in normoxic astrocytes with BPGM overexpression or 2,3-DPG treatment. To investigate the mechanism by which BPGM/2,3-DPG regulated glycolysis in hypoxic astrocytes, we detected the expression of HIF-1α, FIH-1 and TET2 with silencing or overexpression of BPGM and 2,3-DPG treatment. RESULTS: The expression of glycolytic genes and the capacity of lactate markedly increased with 6 h, 12 h, 24 h, 36 h and 48 h 1 % O2 hypoxic treatment in astrocytes. The expression of BPGM was upregulated, and the production of 2,3-DPG was accelerated upon hypoxia. Moreover, when BPGM expression was knocked down, glycolysis was promoted in HEB cells. However, overexpression of BPGM and addition of 2,3-DPG to the cellular medium in normoxic cells could downregulate glycolytic genes. Furthermore, HIF-1α and TET2 exhibited higher expression levels and FIH-1 showed a lower expression level upon BPGM silencing, while these changes were reversed under BPGM overexpression and 2,3-DPG treatment. CONCLUSIONS: Our study revealed that the BPGM/2,3-DPG pathway presented a suppressive effect on glycolysis in hypoxic astrocytes by negatively regulating HIF-1α and TET2.


Asunto(s)
Bisfosfoglicerato Mutasa , Dioxigenasas , Humanos , Bisfosfoglicerato Mutasa/metabolismo , Glucólisis , Hipoxia , ARN Mensajero/metabolismo , Astrocitos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo
4.
Mil Med Res ; 8(1): 23, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766114

RESUMEN

BACKGROUND: Studies have revealed the protective effect of DL-3-n-butylphthalide (NBP) against diseases associated with ischemic hypoxia. However, the role of NBP in animals with hypobaric hypoxia has not been elucidated. This study investigated the effects of NBP on rodents with acute and chronic hypobaric hypoxia. METHODS: Sprague-Dwaley rats and Kunming mice administered with NBP (0, 60, 120, and 240 mg/kg for rats and 0, 90, 180, and 360 mg/kg for mice) were placed in a hypobaric hypoxia chamber at 10,000 m and the survival percentages at 30 min were determined. Then, the time and distance to exhaustion of drug-treated rodents were evaluated during treadmill running and motor-driven wheel-track treadmill experiments, conducted at 5800 m for 3 days or 20 days, to evaluate changes in physical functions. The frequency of active escapes and duration of active escapes were also determined for rats in a shuttle-box experiment, conducted at 5800 m for 6 days or 27 days, to evaluate changes in learning and memory function. ATP levels were measured in the gastrocnemius muscle and malonaldehyde (MDA), superoxide dismutase (SOD), hydrogen peroxide (H2O2), glutathione peroxidase (GSH-Px), and lactate were detected in sera of rats, and routine blood tests were also performed. RESULTS: Survival analysis at 10,000 m indicated NBP could improve hypoxia tolerance ability. The time and distance to exhaustion for mice (NBP, 90 mg/kg) and time to exhaustion for rats (NBP, 120 and 240 mg/kg) significantly increased under conditions of acute hypoxia compared with control group. NBP treatment also significantly increased the time to exhaustion for rats when exposed to chronic hypoxia. Moreover, 240 mg/kg NBP significantly increased the frequency of active escapes under conditions of acute hypoxia. Furthermore, the levels of MDA and H2O2 decreased but those of SOD and GSH-Px in the sera of rats increased under conditions of acute and chronic hypoxia. Additionally, ATP levels in the gastrocnemius muscle significantly increased, while lactate levels in sera significantly decreased. CONCLUSION: NBP improved physical and learning and memory functions in rodents exposed to acute or chronic hypobaric hypoxia by increasing their anti-oxidative capacity and energy supply.


Asunto(s)
Mal de Altura/complicaciones , Benzofuranos/farmacología , Memoria a Corto Plazo/fisiología , Animales , Benzofuranos/uso terapéutico , Modelos Animales de Enfermedad , Ratas , Ratas Sprague-Dawley , Análisis de Supervivencia
6.
Front Oncol ; 9: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30775317

RESUMEN

Hypoxia is a predominant feature in glioblastoma (GBM) and contributes greatly to its drug resistance. However, the molecular mechanisms which are responsible for the development of the resistant phenotype of GBM under hypoxic conditions remain unclear. To analyze the key pathways promoting therapy resistance in hypoxic GBM, we utilized the U87-MG cell line as a human GBM cell model and the human brain HEB cell line as a non-neoplastic brain cell model. These cell lines were cultured in the presence of 21, 5, and 1% O2 for 24 h. We detected the changes in transcriptional profiling and analyzed the biological processes and functional interactions for the genes with different expression levels under different hypoxia conditions. The results indicated that those alterations of U87-MG cells presented specific transcriptional signature in response to diverse hypoxia levels. Gene ontology analysis revealed that the genes related to the DNA replication and cell cycle were suppressed, while the genes involved in tissue and system development to promote cancer development were activated following hypoxia. Moreover, functional interaction analysis suggested that the epigenetic regulator HDAC3 and the transcriptional factors CEBPB and JUN played a central role in organ and system developmental process pathway. Previous studies reported the global alterations caused by activation of HDAC3, CEBPB, and JUN could form the molecular basis of the resistance to chemotherapy and radiation therapy of hypoxic GBM. In our study, the significant growth inhibitory effect of temozolomide on hypoxic GBM cells could be promoted under downregulation of these genes. The experiment suggested that HDAC3, CEBPB, and JUN were closely involved in the drug-resistance phenotype of hypoxic GBM. In summary, we profiled the hypoxia-dependent changes in the transcriptome of the U87-MG cell line and the human brain cell line HEB to identify the transcriptional signatures of U87-MG cells and elucidate the role of hypoxia in the drug-resistant phenotype of GBM. Furthermore, we identified three key genes and explored their important roles in the drug resistance of hypoxic GBM.

7.
Behav Brain Res ; 347: 99-107, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29501623

RESUMEN

Hypobaric hypoxia (HH) at high altitudes leads to a wide range of cognitive impairments which can handicap human normal activities and performances. However, the underlying mechanism is still unclear. Adenosine A2A receptors (A2ARs) of the brain are pivotal to synaptic plasticity and cognition. Besides, insult-induced up-regulation of A2AR regulates neuroinflammation and therefore induces brain damages in various neuropathological processes. The present study was designed to determine whether A2AR-mediate neuroinflammation involves in cognitive impairments under acute HH. A2AR knock-out and wild-type male mice were exposed to a simulated altitude of 8000 m for 7 consecutive days in a hypobaric chamber and simultaneously received behavioral tests including Morris water maze test and open filed test. A2AR expression, the activation of microglia and the production of TNF-α were evaluated in the hippocampus by immunohistochemistry and ELISA, respectively. Behavioral tests showed that acute HH exposure caused the dysfunction of spatial memory and mood, while genetic inactivation of A2AR attenuated the impairment of spatial memory but not that of mood. Double-labeled immunofluorescence showed that A2ARs were mainly expressed on microglia and up-regulated in the hippocampus of acute HH model mice. Acute HH also induced the accumulation of microglia and increased production of TNF-α in the hippocampus, which could be markedly inhibited by A2AR inactivation. These findings indicate that microglia-mediated neuroinflammation triggered by A2AR activation involves in acute HH-induced spatial memory impairment and that A2AR could be a new target for the pharmacotherapy of cognitive dysfunction at high altitudes.


Asunto(s)
Altitud , Disfunción Cognitiva/metabolismo , Hipoxia/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Hipoxia/complicaciones , Hipoxia/patología , Hipoxia/psicología , Inflamación/complicaciones , Inflamación/patología , Inflamación/psicología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Actividad Motora/fisiología , Neuroinmunomodulación/fisiología , Neuronas/metabolismo , Neuronas/patología , Receptor de Adenosina A2A/genética , Memoria Espacial/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
8.
Water Res ; 101: 393-401, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27288673

RESUMEN

A population of arsenite-oxidizing microorganisms enriched from the tailing of the Shimen realgar mine was used to generate biofilms on the surfaces of perlites. This bioreactor is able to completely oxidize 1100 µg/L As(III) dissolved in simulated groundwater into As(V) within 10 min; after 140 days of operation, approximately 20 min were required to completely oxidize the same concentration of As(III). Analysis for the 16S rRNA genes of the microbial community showed that Bacteroidetes and Proteobacteria are dominant in the reactor. Six different bacterial strains were randomly isolated from the reactor. Function and gene analysis indicated that all the isolates possess arsenite-oxidizing activity, and five of them are chemoautotrophic. Further analysis showed that a large diversity of AioAs and two types of RuBisCOs are present in the microbial community. This suggests that many chemoautotrophic arsenite-oxidizing microorganisms were responsible for quick oxidation of arsenite in the reactor. We also found that the reactor is easily regenerated and its number is readily expanded. To the best of our knowledge, the arsenite-oxidizing efficiency, which was expressed as the minimum time for complete oxidization of a certain concentration of As(III) under a single operation, of this bioreactor is the highest among the described bioreactors; it is also the most stable, economic and environment-friendly.


Asunto(s)
Arsenitos , ARN Ribosómico 16S/genética , Arsénico , Bacterias/metabolismo , Reactores Biológicos , Agua Subterránea/microbiología , Oxidación-Reducción , Filogenia
9.
J Proteomics ; 128: 231-50, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26254009

RESUMEN

Androctonus bicolor is one of the most poisonous scorpion species in the world. However, little has been known about the venom composition of the scorpion. To better understand the molecular diversity and medical significance of the venom from the scorpion, we systematically analyzed the venom components by combining transcriptomic and proteomic surveys. Random sequencing of 1000 clones from a cDNA library prepared from the venom glands of the scorpion revealed that 70% of the total transcripts code for venom peptide precursors. Our efforts led to a discovery of 103 novel putative venom peptides. These peptides include NaTx-like, KTx-like and CaTx-like peptides, putative antimicrobial peptides, defensin-like peptides, BPP-like peptides, BmKa2-like peptides, Kunitz-type toxins and some new-type venom peptides without disulfide bridges, as well as many new-type venom peptides that are cross-linked with one, two, three, five or six disulfide bridges, respectively. We also identified three peptides that are identical to known toxins from scorpions. The venom was also analyzed using a proteomic technique. The presence of a total of 16 different venom peptides was confirmed by LC-MS/MS analysis. The discovery of a wide range of new and new-type venom peptides highlights the unique diversity of the venom peptides from A. bicolor. These data also provide a series of novel templates for the development of therapeutic drugs for treating ion channel-associated diseases and infections caused by antibiotic-resistant pathogens, and offer molecular probes for the exploration of structures and functions of various ion channels.


Asunto(s)
Variación Genética/genética , Péptidos/genética , Proteoma/genética , Venenos de Escorpión/genética , Transcriptoma/genética , Secuencia de Bases , Evolución Molecular , Datos de Secuencia Molecular , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda