Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell ; 157(3): 689-701, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766812

RESUMEN

Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. We conducted a screen for circadian-relevant neurons in the Drosophila brain and report here that cells of the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GFP reconstitution across synaptic partners (GRASP) analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin-releasing factor (CRF) homolog, DH44, as a circadian output molecule that is specifically expressed by PI neurons and is required for normal rest:activity rhythms. Notably, selective activation or ablation of just six DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms.


Asunto(s)
Relojes Circadianos , Drosophila/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/fisiología , Ritmo Circadiano , Drosophila/citología , Neuronas/citología , Análisis de la Célula Individual , Transcriptoma
2.
Mol Cell ; 66(3): 304-305, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475866

RESUMEN

Chen et al. (2017) demonstrate whole-genome amplification of single-cell genomic DNA using linear nucleic acid amplification. This provides reliable single-nucleotide variation (SNV) detection across the single-cell genome, facilitating an understanding of cell-to-cell similarities and distinctions.


Asunto(s)
Genoma , Análisis de la Célula Individual , ADN , Genoma Humano , Humanos , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
3.
Angew Chem Int Ed Engl ; 63(18): e202401544, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38470412

RESUMEN

There is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95 % mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single-mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.


Asunto(s)
ADN Mitocondrial , Hidrogeles , Microfluídica/métodos , Sefarosa , Microscopía
4.
J Biol Chem ; 298(8): 102147, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716779

RESUMEN

Astrocytes play a critical role in brain function, but their contribution during ethanol (EtOH) consumption remains largely understudied. In light of recent findings on the heterogeneity of astrocyte physiology and gene expression, an approach with the ability to identify subtypes and capture this heterogeneity is necessary. Here, we combined measurements of calcium signaling and gene expression to define EtOH-induced astrocyte subtypes. In the absence of a demonstrated EtOH receptor, EtOH is believed to have effects on the function of many receptors and downstream biological cascades that underlie calcium responsiveness. This mechanism of EtOH-induced calcium signaling is unknown and this study provides the first step in understanding the characteristics of cells displaying these observed responses. To characterize underlying astrocyte subtypes, we assessed the correlation between calcium signaling and astrocyte gene expression signature in response to EtOH. We found that various EtOH doses increased intracellular calcium levels in a subset of astrocytes, distinguishing three cellular response types and one nonresponsive subtype as categorized by response waveform properties. Furthermore, single-cell RNA-seq analysis of astrocytes from the different response types identified type-enriched discriminatory gene expression signatures. Combining single-cell calcium responses and gene expression analysis identified specific astrocyte subgroups among astrocyte populations defined by their response to EtOH. This result provides a basis for identifying the relationship between astrocyte susceptibility to EtOH and corresponding measurable markers of calcium signaling and gene expression, which will be useful to investigate potential subgroup-specific influences of astrocytes on the physiology and pathology of EtOH exposure in the brain.


Asunto(s)
Astrocitos , Señalización del Calcio , Etanol , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Etanol/farmacología
5.
Nano Lett ; 22(11): 4315-4324, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35588529

RESUMEN

Extracellular vesicles (EVs) have attracted enormous attention for their diagnostic and therapeutic potential. However, it has proven challenging to achieve the sensitivity to detect individual nanoscale EVs, the specificity to distinguish EV subpopulations, and a sufficient throughput to study EVs among an enormous background. To address this fundamental challenge, we developed a droplet-based optofluidic platform to quantify specific individual EV subpopulations at high throughput. The key innovation of our platform is parallelization of droplet generation, processing, and analysis to achieve a throughput (∼20 million droplets/min) more than 100× greater than typical microfluidics. We demonstrate that the improvement in throughput enables EV quantification at a limit of detection = 9EVs/µL, a >100× improvement over gold standard methods. Additionally, we demonstrate the clinical potential of this system by detecting human EVs in complex media. Building on this work, we expect this technology will allow accurate quantification of rare EV subpopulations for broad biomedical applications.


Asunto(s)
Vesículas Extracelulares , Ensayo de Inmunoadsorción Enzimática , Humanos , Microfluídica
6.
Cereb Cortex ; 31(2): 731-745, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32710103

RESUMEN

The prefrontal cortex (PFC) plays a key role in higher order cognitive functions and psychiatric disorders such as autism, schizophrenia, and depression. In the PFC, the two major classes of neurons are the glutamatergic pyramidal (Pyr) cells and the GABAergic interneurons such as fast-spiking (FS) cells. Despite extensive electrophysiological, morphological, and pharmacological studies of the PFC, the therapeutically utilized drug targets are restricted to dopaminergic, glutamatergic, and GABAergic receptors. To expand the pharmacological possibilities as well as to better understand the cellular and network effects of clinically used drugs, it is important to identify cell-type-selective, druggable cell surface proteins and to link developed drug candidates to Pyr or FS cell targets. To identify the mRNAs of such cell-specific/enriched proteins, we performed ultra-deep single-cell mRNA sequencing (19 685 transcripts in total) on electrophysiologically characterized intact PFC neurons harvested from acute brain slices of mice. Several selectively expressed transcripts were identified with some of the genes that have already been associated with cellular mechanisms of psychiatric diseases, which we can now assign to Pyr (e.g., Kcnn2, Gria3) or FS (e.g., Kcnk2, Kcnmb1) cells. The earlier classification of PFC neurons was also confirmed at mRNA level, and additional markers have been provided.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Células Piramidales/fisiología , ARN Mensajero/metabolismo , Transcripción Genética/genética , Animales , Fenómenos Electrofisiológicos , Marcadores Genéticos , Proteínas de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Células Piramidales/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
7.
Small ; 17(3): e2005793, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33345457

RESUMEN

Cells are complex machines whose behaviors arise from their internal collection of dynamically interacting organelles, supramolecular complexes, and cytoplasmic chemicals. The current understanding of the nature by which subcellular biology produces cell-level behaviors is limited by the technological hurdle of measuring the large number (>103 ) of small-sized (<1 µm) heterogeneous organelles and subcellular structures found within each cell. In this review, the emergence of a suite of micro- and nano-technologies for studying intracellular biology on the scale of organelles is described. Devices that use microfluidic and microelectronic components for 1) extracting and isolating subcellular structures from cells and lysate; 2) analyzing the physiology of individual organelles; and 3) recreating subcellular assembly and functions in vitro, are described. The authors envision that the continued development of single organelle technologies and analyses will serve as a foundation for organelle systems biology and will allow new insight into fundamental and clinically relevant biological questions.


Asunto(s)
Microfluídica , Orgánulos , Biología
9.
Bioconjug Chem ; 31(9): 2172-2178, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32786369

RESUMEN

Light-activated ("caged") oligonucleotides provide a strategy for modulating the activity of antisense oligos, siRNA, miRNA, aptamers, DNAzymes, and mRNA-capturing probes with high spatiotemporal resolution. However, the near-UV and visible wavelengths that promote these bond-breaking reactions poorly penetrate living tissue, which limits some biological applications. To address this issue, we describe the first example of a protease-activated oligonucleotide probe, capable of reporting on caspase-3 during cellular apoptosis. The 2'-F RNA-peptide substrate-peptide nucleic acid (PNA) hairpin structure was generated in 30% yield in a single bioconjugation step.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Sondas de Oligonucleótidos/metabolismo , Secuencia de Bases , Caspasa 3/metabolismo , Activación Enzimática , Células HeLa , Humanos , Sondas de Oligonucleótidos/química , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/metabolismo
10.
BMC Biol ; 17(1): 5, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678683

RESUMEN

BACKGROUND: RNA localization involves cis-motifs that are recognized by RNA-binding proteins (RBP), which then mediate localization to specific sub-cellular compartments. RNA localization is critical for many different cell functions, e.g., in neuronal dendrites, localization is a critical step for long-lasting synaptic potentiation. However, there is little consensus regarding which RNAs are localized and the role of alternative isoforms in localization. A comprehensive catalog of localized RNA can help dissect RBP/RNA interactions and localization motifs. Here, we utilize a single cell sub-cellular RNA sequencing approach to profile differentially localized RNAs from individual cells across multiple single cells to help identify a consistent set of localized RNA in mouse neurons. RESULTS: Using independent RNA sequencing from soma and dendrites of the same neuron, we deeply profiled the sub-cellular transcriptomes to assess the extent and variability of dendritic RNA localization in individual hippocampal neurons, including an assessment of differential localization of alternative 3'UTR isoforms. We identified 2225 dendritic RNAs, including 298 cases of 3'UTR isoform-specific localization. We extensively analyzed the localized RNAs for potential localization motifs, finding that B1 and B2 SINE elements are up to 5.7 times more abundant in localized RNA 3'UTRs than non-localized, and also functionally characterized the localized RNAs using protein structure analysis. CONCLUSION: We integrate our list of localized RNAs with the literature to provide a comprehensive list of known dendritically localized RNAs as a resource. This catalog of transcripts, including differentially localized isoforms and computationally hypothesized localization motifs, will help investigators further dissect the genome-scale mechanism of RNA localization.


Asunto(s)
Dendritas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Isoformas de ARN/genética , ARN Mensajero/genética , Regiones no Traducidas 3' , Animales , Ratones , Isoformas de ARN/metabolismo , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Fracciones Subcelulares/metabolismo , Transcriptoma
11.
Chembiochem ; 19(12): 1250-1254, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29479781

RESUMEN

Light-activated ("caged") antisense oligonucleotides are powerful molecules for regulating gene expression at submicron spatial resolution through the focal modulation of endogenous cellular processes. Cyclized caged oligos are particularly promising structures because of their inherent stability and similarity to naturally occurring circular DNA and RNA molecules. Here, we introduce an efficient route for cyclizing an antisense oligodeoxynucleotide incorporating a photocleavable linker. Oligo cyclization was achieved for several sequences in nearly quantitative yields through intramolecular copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Caging stability and light activation were characterized by FRET efficiency, denaturing gel assay, and melting temperature measurements. Finally, a cyclized caged oligo was designed to target gfap, and it gave a tenfold reduction in glial fibrillary acidic protein upon photoactivation in astrocytes.


Asunto(s)
Química Clic/métodos , Oligonucleótidos Antisentido/síntesis química , Optogenética/métodos , Alquinos/síntesis química , Alquinos/química , Animales , Astrocitos/citología , Astrocitos/metabolismo , Azidas/síntesis química , Azidas/química , Secuencia de Bases , Carbocianinas/síntesis química , Carbocianinas/química , Catálisis , Cobre/química , Ciclización , Reacción de Cicloadición/métodos , Expresión Génica/efectos de la radiación , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/genética
12.
Bioessays ; 38(2): 172-80, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26625861

RESUMEN

There is a growing appreciation of the extent of transcriptome variation across individual cells of the same cell type. While expression variation may be a byproduct of, for example, dynamic or homeostatic processes, here we consider whether single-cell molecular variation per se might be crucial for population-level function. Under this hypothesis, molecular variation indicates a diversity of hidden functional capacities within an ensemble of identical cells, and this functional diversity facilitates collective behavior that would be inaccessible to a homogenous population. In reviewing this topic, we explore possible functions that might be carried by a heterogeneous ensemble of cells; however, this question has proven difficult to test, both because methods to manipulate molecular variation are limited and because it is complicated to define, and measure, population-level function. We consider several possible methods to further pursue the hypothesis that variation is function through the use of comparative analysis and novel experimental techniques.


Asunto(s)
Variación Genética/genética , Variación Genética/fisiología , Transcriptoma/genética , Transcriptoma/fisiología , Animales , Humanos
13.
Nat Methods ; 11(2): 190-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24412976

RESUMEN

Transcriptome profiling of single cells resident in their natural microenvironment depends upon RNA capture methods that are both noninvasive and spatially precise. We engineered a transcriptome in vivo analysis (TIVA) tag, which upon photoactivation enables mRNA capture from single cells in live tissue. Using the TIVA tag in combination with RNA sequencing (RNA-seq), we analyzed transcriptome variance among single neurons in culture and in mouse and human tissue in vivo. Our data showed that the tissue microenvironment shapes the transcriptomic landscape of individual cells. The TIVA methodology is, to our knowledge, the first noninvasive approach for capturing mRNA from live single cells in their natural microenvironment.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hipocampo/metabolismo , Neuronas/metabolismo , Análisis de Secuencia de ARN/métodos , Animales , Biología Computacional , Biblioteca de Genes , Humanos , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética
14.
FASEB J ; 30(1): 81-92, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26304220

RESUMEN

Brown adipocytes (BAs) are specialized for adaptive thermogenesis and, upon sympathetic stimulation, activate mitochondrial uncoupling protein (UCP)-1 and oxidize fatty acids to generate heat. The capacity for brown adipose tissue (BAT) to protect against obesity and metabolic disease is recognized, yet information about which signals activate BA, besides ß3-adrenergic receptor stimulation, is limited. Using single-cell transcriptomics, we confirmed the presence of mRNAs encoding traditional BAT markers (i.e., UCP1, expressed in 100% of BAs Adrb3, expressed in <50% of BAs) in mouse and have shown single-cell variability (>1000-fold) in their expression at both the mRNA and protein levels. We further identified mRNAs encoding novel markers, orphan GPCRs, and many receptors that bind the classic neurotransmitters, neuropeptides, chemokines, cytokines, and hormones. The transcriptome variability between BAs suggests a much larger range of responsiveness of BAT than previously recognized and that not all BAs function identically. We examined the in vivo functional expression of 12 selected receptors by microinjecting agonists into live mouse BAT and analyzing the metabolic response. In this manner, we expanded the number of known receptors on BAs at least 25-fold, while showing that the expression of classic BA markers is more complex and variable than previously thought.


Asunto(s)
Adipocitos Marrones/citología , Tejido Adiposo Pardo/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Tejido Adiposo Pardo/citología , Animales , Canales Iónicos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Obesidad/metabolismo , Termogénesis/fisiología , Transcriptoma
15.
BMC Genomics ; 17(1): 966, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27881084

RESUMEN

BACKGROUND: Recently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of single cell methods and the factors governing their performance are still poorly known. RESULTS: Here, we conducted a large-scale control experiment to assess the transfer function of three scRNA-seq methods and factors modulating the function. All three methods detected greater than 70% of the expected number of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules. Despite the small number of molecules, sequencing depth significantly affected gene detection. While biases in detection and quantification were qualitatively similar across methods, the degree of bias differed, consistent with differences in molecular protocol. Measurement reliability increased with expression level for all methods and we conservatively estimate measurements to be quantitative at an expression level greater than ~5-10 molecules. CONCLUSIONS: Based on these extensive control studies, we propose that RNA-seq of single cells has come of age, yielding quantitative biological information.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Amplificación de Ácido Nucleico , ARN/genética , Análisis de la Célula Individual , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos
16.
FASEB J ; 28(2): 771-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24192459

RESUMEN

Despite the recognized importance of the dorsal raphe (DR) serotonergic (5-HT) nuclei in the pathophysiology of depression and anxiety, the molecular components/putative drug targets expressed by these neurons are poorly characterized. Utilizing the promoter of an ETS domain transcription factor that is a stable marker of 5-HT neurons (Pet-1) to drive 5-HT neuronal expression of YFP, we identified 5-HT neurons in live acute slices. We isolated RNA from single 5-HT neurons in the ventromedial and lateral wings of the DR and performed single-cell RNA-Seq analysis identifying >500 G-protein coupled receptors (GPCRs) including receptors for classical transmitters, lipid signals, and peptides as well as dozens of orphan-GPCRs. Using these data to inform our selection of receptors to assess, we found that oxytocin and lysophosphatidic acid 1 receptors are translated and active in costimulating, with the α1-adrenergic receptor, the firing of DR 5-HT neurons, while the effects of histamine are inhibitory and exerted at H3 histamine receptors. The inhibitory histamine response provides evidence for tonic in vivo histamine inhibition of 5-HT neurons. This study illustrates that unbiased single-cell transcriptomics coupled with functional analyses provides novel insights into how neurons and neuronal systems are regulated.


Asunto(s)
Neuronas Serotoninérgicas/metabolismo , Animales , Electrofisiología , Técnicas In Vitro , Masculino , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo
18.
BMC Genomics ; 15: 883, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25301173

RESUMEN

BACKGROUND: Neurons display a highly polarized architecture. Their ability to modify their features under intracellular and extracellular stimuli, known as synaptic plasticity, is a key component of the neurochemical basis of learning and memory. A key feature of synaptic plasticity involves the delivery of mRNAs to distinct sub-cellular domains where they are locally translated. Regulatory coordination of these spatio-temporal events is critical for synaptogenesis and synaptic plasticity as defects in these processes can lead to neurological diseases. In this work, using microdissected dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in dendrites of neurons to assay the evolutionary differences in subcellular dendritic transcripts localization. RESULTS: Our microarray analysis highlighted significantly greater evolutionary diversification of RNA localization in the dendritic transcriptomes (81% gene identity difference among the top 5% highly expressed genes) compared to the transcriptomes of 11 different central nervous system (CNS) and non-CNS tissues (average of 44% gene identity difference among the top 5% highly expressed genes). Differentially localized genes include many genes involved in CNS function. CONCLUSIONS: Species differences in sub-cellular localization may reflect non-functional neutral drift. However, the functional categories of mRNA showing differential localization suggest that at least part of the divergence may reflect activity-dependent functional differences of neurons, mediated by species-specific RNA subcellular localization mechanisms.


Asunto(s)
Evolución Biológica , Neuronas/metabolismo , ARN Mensajero/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Dendritas/metabolismo , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Plasticidad Neuronal/genética , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Proteínas Nucleares/metabolismo , Ratas , Ratas Sprague-Dawley , Transcriptoma
19.
Proc Natl Acad Sci U S A ; 108(29): 11918-23, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730152

RESUMEN

We show that the transfer of the adult ventricular myocyte (AVM) transcriptome into either a fibroblast or an astrocyte converts the host cell into a cardiomyocyte. Transcriptome-effected cardiomyocytes (tCardiomyocytes) display morphologies, immunocytochemical properties, and expression profiles of postnatal cardiomyocytes. Cell morphology analysis shows that tCardiomyoctes are elongated and have a similar length-to-width ratio as AVMs. These global phenotypic changes occur in a time-dependent manner and confer electroexcitability to the tCardiomyocytes. tCardiomyocyte generation does not require continuous overexpression of specific transcription factors; for example, the expression level of transcription factor Mef2c is higher in tCardiomyocytes than in fibroblasts, but similar in tCardiomyocytes and AVMs. These data highlight the dominant role of the gene expression profile in developing and maintaining cellular phenotype. The transcriptome-induced phenotype remodeling-generated tCardiomyocyte has significant implications for understanding and modulating cardiac disease development.


Asunto(s)
Fibroblastos/citología , Perfilación de la Expresión Génica , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fenotipo , ARN/genética , Transfección/métodos , Animales , Astrocitos/citología , Astrocitos/metabolismo , Forma de la Célula , Tamaño de la Célula , Células Cultivadas , Biología Computacional , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Microscopía Confocal , Técnicas de Placa-Clamp , Poli A/genética
20.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352577

RESUMEN

There is growing interest in understanding the biological implications of single cell heterogeneity and intracellular heteroplasmy of mtDNA, but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95% mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda