Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 58(26): 11421-11435, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888209

RESUMEN

Coastal zones account for 75% of marine methane emissions, despite covering only 15% of the ocean surface area. In these ecosystems, the tight balance between methane production and oxidation in sediments prevents most methane from escaping into seawater. However, anthropogenic activities could disrupt this balance, leading to an increased methane escape from coastal sediments. To quantify and unravel potential mechanisms underlying this disruption, we used a suite of biogeochemical and microbiological analyses to investigate the impact of anthropogenically induced redox shifts on methane cycling in sediments from three sites with contrasting bottom water redox conditions (oxic-hypoxic-euxinic) in the eutrophic Stockholm Archipelago. Our results indicate that the methane production potential increased under hypoxia and euxinia, while anaerobic oxidation of methane was disrupted under euxinia. Experimental, genomic, and biogeochemical data suggest that the virtual disappearance of methane-oxidizing archaea at the euxinic site occurred due to sulfide toxicity. This could explain a near 7-fold increase in the extent of escape of benthic methane at the euxinic site relative to the hypoxic one. In conclusion, these insights reveal how the development of euxinia could disrupt the coastal methane biofilter, potentially leading to increased methane emissions from coastal zones.


Asunto(s)
Sedimentos Geológicos , Metano , Oxidación-Reducción , Sulfuros , Metano/metabolismo , Sedimentos Geológicos/química , Anaerobiosis , Agua de Mar/química , Eutrofización , Archaea/metabolismo
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39030685

RESUMEN

Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-ß-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-ß-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.


Asunto(s)
Archaea , Agua Dulce , Metano , Osmorregulación , Filogenia , Estrés Salino , Metano/metabolismo , Agua Dulce/microbiología , Anaerobiosis , Archaea/metabolismo , Archaea/genética , Archaea/clasificación , Oxidación-Reducción
3.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37170064

RESUMEN

Agricultural drainage ditches are subjected to high anthropogenic nitrogen input, leading to eutrophication and greenhouse gas emissions. Nitrate-dependent anaerobic methane oxidation (N-DAMO) could be a promising remediation strategy to remove methane (CH4) and nitrate (NO3-) simultaneously. Therefore, we aimed to evaluate the potential of N-DAMO to remove excess NO3- and decrease CH4 release from agricultural drainage ditches. Microcosm experiments were conducted using sediment and surface water collected from three different sites: a sandy-clay ditch (SCD), a freshwater-fed peatland ditch (FPD), and a brackish peatland ditch (BPD). The microcosms were inoculated with an N-DAMO enrichment culture dominated by Candidatus Methanoperedens and Candidatus Methylomirabilis and supplemented with 13CH4 and 15NO3-. A significant decrease in CH4 and NO3- concentration was only observed in the BPD sediment. In freshwater sediments (FPD and SCD), the effect of N-DAMO inoculation on CH4 and NO3- removal was negligible, likely because N-DAMO microorganisms were outcompeted by heterotrophic denitrifiers consuming NO3- much faster. Overall, our results suggest that bioaugmentation with N-DAMO might be a potential strategy for decreasing NO3- concentrations and CH4 emission in brackish ecosystems with increasing agricultural activities where the native microbial community is incapable of efficient denitrification.


Asunto(s)
Agricultura , Biodegradación Ambiental , Metano , Nitratos , Purificación del Agua , Anaerobiosis , Reactores Biológicos , Desnitrificación , Ecosistema , Metano/metabolismo , Nitratos/metabolismo , Oxidación-Reducción , Arena , Purificación del Agua/métodos , Agua Dulce , Aguas Salinas , Microbiología del Agua , Bacterias/metabolismo
4.
Front Microbiol ; 13: 798906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283857

RESUMEN

Microbial communities are key drivers of carbon, sulfur, and nitrogen cycling in coastal ecosystems, where they are subjected to dynamic shifts in substrate availability and exposure to toxic compounds. However, how these shifts affect microbial interactions and function is poorly understood. Unraveling such microbial community responses is key to understand their environmental distribution and resilience under current and future disturbances. Here, we used metagenomics and metatranscriptomics to investigate microbial community structure and transcriptional responses to prolonged ammonium deprivation, and sulfide and nitric oxide toxicity stresses in a controlled bioreactor system mimicking coastal sediment conditions. Ca. Nitrobium versatile, identified in this study as a sulfide-oxidizing denitrifier, became a rare community member upon ammonium removal. The ANaerobic Methanotroph (ANME) Ca. Methanoperedens nitroreducens showed remarkable resilience to both experimental conditions, dominating transcriptional activity of dissimilatory nitrate reduction to ammonium (DNRA). During the ammonium removal experiment, increased DNRA was unable to sustain anaerobic ammonium oxidation (anammox) activity. After ammonium was reintroduced, a novel anaerobic bacterial methanotroph species that we have named Ca. Methylomirabilis tolerans outcompeted Ca. Methylomirabilis lanthanidiphila, while the anammox Ca. Kuenenia stuttgartiensis outcompeted Ca. Scalindua rubra. At the end of the sulfide and nitric oxide experiment, a gammaproteobacterium affiliated to the family Thiohalobacteraceae was enriched and dominated transcriptional activity of sulfide:quinone oxidoreductases. Our results indicate that some community members could be more resilient to the tested experimental conditions than others, and that some community functions such as methane and sulfur oxidation coupled to denitrification can remain stable despite large shifts in microbial community structure. Further studies on complex bioreactor enrichments are required to elucidate coastal ecosystem responses to future disturbances.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda