Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Annu Rev Biochem ; 93(1): 289-316, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38316136

RESUMEN

RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).


Asunto(s)
Transducción de Señal , Quinasas raf , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas ras/química , Quinasas raf/metabolismo , Quinasas raf/genética , Animales , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética
2.
Mol Pharmacol ; 105(2): 97-103, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164587

RESUMEN

Lung cancer is commonly caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric kinase inhibitors are unaffected by common ATP-site resistance mutations and represent a promising therapeutic strategy for targeting drug-resistant EGFR variants. However, allosteric inhibitors are antagonized by kinase dimerization, and understanding this phenomenon has been limited to cellular experiments. To facilitate the study of allosteric inhibitor pharmacology, we designed and purified a constitutive EGFR kinase dimer harboring the clinically relevant L858R/T790M mutations. Kinetic characterization revealed that the EGFR kinase dimer is more active than monomeric EGFR(L858R/T790M) kinase and has the same Km,ATP Biochemical profiling of a large panel of ATP-competitive and allosteric EGFR inhibitors showed that allosteric inhibitor potency decreased by >500-fold in the kinase dimer compared with monomer, yielding IC50 values that correlate well with Ba/F3 cellular potencies. Thus, this readily purifiable constitutive asymmetric EGFR kinase dimer represents an attractive tool for biochemical evaluation of EGFR inhibitor pharmacology, in particular for allosteric inhibitors. SIGNIFICANCE STATEMENT: Drugs targeting epidermal growth factor receptor (EGFR) kinase are commonly used to treat lung cancers but are affected by receptor dimerization. Here, we describe a locked kinase dimer that can be used to study EGFR inhibitor pharmacology.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Adenosina Trifosfato , Resistencia a Antineoplásicos
3.
ChemMedChem ; 19(12): e202300343, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38523074

RESUMEN

A novel macrocyclic inhibitor of mutant EGFR (BI-4020) has shown promise in pre-clinical studies of T790M and C797S drug-resistant non-small cell lung cancer. To better understand the molecular basis for BI-4020 selectivity and potency, we have carried out biochemical activity assays and structural analysis with X-ray crystallography. Biochemical potencies agree with previous studies indicating that BI-4020 is uniquely potent against drug-resistant L858R/T790M and L858R/T790M/C797S variants. X-ray structures with wild-type (2.4 Å) and T790M/V948R (3.1 Å) EGFR kinase domains show that BI-4020 is likely rendered selective due to interactions with the kinase domain hinge region as well as T790M, akin to Osimertinib. Additionally, BI-4020 is also rendered more potent due to its constrained macrocycle geometry as well as additional H-bonds to conserved K745 and T845 residues in both active and inactive conformations. These findings taken together show how this novel macrocyclic inhibitor is both highly potent and selective for mutant EGFR in a reversible mechanism and motivate structure-inspired approaches to developing targeted therapies in medicinal oncology.


Asunto(s)
Receptores ErbB , Compuestos Macrocíclicos , Inhibidores de Proteínas Quinasas , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Receptores ErbB/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Humanos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Cristalografía por Rayos X , Relación Estructura-Actividad , Estructura Molecular , Modelos Moleculares , Sitios de Unión , Relación Dosis-Respuesta a Droga , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química
4.
ACS Cent Sci ; 10(6): 1156-1166, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38947214

RESUMEN

A systematic strategy to develop dual-warhead inhibitors is introduced to circumvent the limitations of conventional covalent inhibitors such as vulnerability to mutations of the corresponding nucleophilic residue. Currently, all FDA-approved covalent small molecules feature one electrophile, leaving open a facile route to acquired resistance. We conducted a systematic analysis of human proteins in the protein data bank to reveal ∼400 unique targets amendable to dual covalent inhibitors, which we term "molecular bidents". We demonstrated this strategy by targeting two kinases: MKK7 and EGFR. The designed compounds, ZNL-8162 and ZNL-0056, are ATP-competitive inhibitors that form two covalent bonds with cysteines and retain potency against single cysteine mutants. Therefore, molecular bidents represent a new pharmacological modality with the potential for improved selectivity, potency, and drug resistance profile.

5.
J Med Chem ; 67(4): 2837-2848, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38300264

RESUMEN

The pyrazolopyrimidine (PP) heterocycle is a versatile and widely deployed core scaffold for the development of kinase inhibitors. Typically, a 4-amino-substituted pyrazolopyrimidine binds in the ATP-binding pocket in a conformation analogous to the 6-aminopurine of ATP. Here, we report the discovery of ZNL0325 which exhibits a flipped binding mode where the C3 position is oriented toward the ribose binding pocket. ZNL0325 and its analogues feature an acrylamide side chain at the C3 position which is capable of forming a covalent bond with multiple kinases that possess a cysteine at the αD-1 position including BTK, EGFR, BLK, and JAK3. These findings suggest that the ability to form a covalent bond can override the preferred noncovalent binding conformation of the heterocyclic core and provides an opportunity to create structurally distinct covalent kinase inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Adenosina Trifosfato , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo
6.
Commun Chem ; 7(1): 38, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378740

RESUMEN

Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The re-engineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda