Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genes Dev ; 35(7-8): 528-541, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33737385

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.


Asunto(s)
Neoplasias Pulmonares/fisiopatología , Survivin/genética , Survivin/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/genética , Ratones , Mutación , Metástasis de la Neoplasia , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo
2.
Gastroenterology ; 165(3): 613-628.e20, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257519

RESUMEN

BACKGROUND & AIMS: Despite recent progress in identifying aberrant genetic and epigenetic alterations in esophageal squamous cell carcinoma (ESCC), the mechanism of ESCC initiation remains unknown. METHODS: Using CRISPR/Cas 9-based genetic ablation, we targeted 9 genes (TP53, CDKN2A, NOTCH1, NOTCH3, KMT2D, KMT2C, FAT1, FAT4, and AJUBA) in murine esophageal organoids. Transcriptomic phenotypes of organoids and chemokine released by organoids were analyzed by single-cell RNA sequencing. Tumorigenicity and immune evasion of organoids were monitored by allograft transplantation. Human ESCC single-cell RNA sequencing data sets were analyzed to classify patients and find subsets relevant to organoid models and immune evasion. RESULTS: We established 32 genetically engineered esophageal organoids and identified key genetic determinants that drive ESCC initiation. A single-cell transcriptomic analysis uncovered that Trp53, Cdkn2a, and Notch1 (PCN) triple-knockout induces neoplastic features of ESCC by generating cell lineage heterogeneity and high cell plasticity. PCN knockout also generates an immunosuppressive niche enriched with exhausted T cells and M2 macrophages via the CCL2-CCR2 axis. Mechanistically, CDKN2A inactivation transactivates CCL2 via nuclear factor-κB. Moreover, comparative single-cell transcriptomic analyses stratified patients with ESCC and identified a specific subtype recapitulating the PCN-type ESCC signatures, including the high expression of CCL2 and CD274/PD-L1. CONCLUSIONS: Our study unveils that loss of TP53, CDKN2A, and NOTCH1 induces esophageal neoplasia and immune evasion for ESCC initiation and proposes the CCL2 blockade as a viable option for targeting PCN-type ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Animales , Ratones , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Evasión Inmune/genética , Mutación , Proteínas con Dominio LIM/genética
3.
EMBO Rep ; 22(2): e48351, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33403789

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the most common subtype of esophageal cancer worldwide. The most commonly mutated gene in ESCC is TP53. Using a combinatorial genetic and carcinogenic approach, we generate a novel mouse model of ESCC expressing either mutant or null p53 and show that mutant p53 exhibits enhanced tumorigenic properties and displays a distinct genomic profile. Through RNA-seq analysis, we identify several endocytic recycling genes, including Rab Coupling Protein (Rab11-FIP1), which are significantly downregulated in mutant p53 tumor cells. In 3-dimensional (3D) organoid models, genetic knockdown of Rab11-FIP1 results in increased organoid size. Loss of Rab11-FIP1 increases tumor cell invasion in part through mutant p53 but also in an independent manner. Furthermore, loss of Rab11-FIP1 in human ESCC cell lines decreases E-cadherin expression and increases mesenchymal lineage-specific markers, suggesting induction of epithelial-mesenchymal transition (EMT). Rab11-FIP1 regulates EMT through direct inhibition of Zeb1, a key EMT transcriptional factor. Our novel findings reveal that Rab11-FIP1 regulates organoid formation, tumor cell invasion, and EMT.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica
4.
Drug Resist Updat ; 33-35: 23-35, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29145972

RESUMEN

The advent of cancer immunotherapy (CIT) and its success in treating primary and metastatic cancer may offer substantially improved outcomes for patients. Despite recent advancements, many malignancies remain resistant to CIT, among which are brain metastases, a particularly virulent disease with no apparent cure. The immunologically unique niche of the brain has prompted compelling new questions in immuno-oncology such as the effects of tissue-specific differences in immune response, heterogeneity between primary tumors and distant metastases, and the role of spatiotemporal dynamics in shaping an effective anti-tumor immune response. Current methods to examine the immunobiology of metastases in the brain are constrained by tissue processing methods that limit spatial data collection, omit dynamic information, and cannot recapitulate the heterogeneity of the tumor microenvironment. In the current review, we describe how high-resolution, live imaging tools, particularly intravital microscopy (IVM), are instrumental in answering these questions. IVM of pre-clinical cancer models enables short- and long-term observations of critical immunobiology and metastatic growth phenomena to potentially generate revolutionary insights into the spatiotemporal dynamics of brain metastasis, interactions of CIT with immune elements therein, and influence of chemo- and radiotherapy. We describe the utility of IVM to study brain metastasis in mice by tracking the migration and growth of fluorescently-labeled cells, including cancer cells and immune subsets, while monitoring the physical environment within optical windows using imaging dyes and other signal generation mechanisms to illuminate angiogenesis, hypoxia, and/or CIT drug expression within the metastatic niche. Our review summarizes the current knowledge regarding brain metastases and the immune milieu, presents the current status of CIT and its prospects in targeting brain metastases to circumvent therapeutic resistance, and proposes avenues to utilize IVM to study CIT drug delivery and therapeutic efficacy in preclinical models that will ultimately facilitate novel drug discovery and innovative combination therapies.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias Encefálicas/terapia , Resistencia a Antineoplásicos , Inmunoterapia/métodos , Oncología Médica/métodos , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/secundario , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Microscopía Intravital , Oncología Médica/tendencias , Ratones , Resultado del Tratamiento , Microambiente Tumoral/inmunología
5.
Physiol Genomics ; 49(2): 88-95, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28011880

RESUMEN

In several species caloric restriction (CR) extends life span. In this paper we integrate data from studies on CR and other sources to articulate the hypothalamic deregulation hypothesis by which estrogen receptor-alpha (ER-α) signaling in the hypothalamus and limbic system affects life span under the stress of CR in mammals. ER-α is one of two principal estrogen-binding receptors differentially expressed in the amygdala, hippocampus, and several key hypothalamic nuclei: the arcuate nucleus (ARN), preoptic area (POA), ventromedial nucleus (VMN), antero ventral periventricular nucleus (AVPV), paraventricular nucleus (PVN), supraoptic nucleus (SON), and suprachiasmatic nucleus (SCN). Estradiol signaling via ER-α is essential in basal level functioning of reproductive cycle, sexually receptive behaviors, physiological stress responses, as well as sleep cycle, and other nonsexual behaviors. When an organism is placed under long-term CR, which introduces an external stress to this ER-α signaling, the reduction of ER-α expression is attenuated over time in the hypothalamus. This review paper seeks to characterize the downstream effects of ER-α in the hypothalamus and limbic system that affect normal endocrine functioning.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Hipotálamo/metabolismo , Longevidad , Modelos Biológicos , Animales , Humanos , Caracteres Sexuales , Estrés Fisiológico
6.
iScience ; 27(5): 109795, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38741711

RESUMEN

Despite the promising outcomes of immune checkpoint inhibitors (ICIs), resistance to ICI presents a new challenge. Therefore, selecting patients for specific ICI applications is crucial for maximizing therapeutic efficacy. Herein, we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network and transcriptional signatures of T cells and myeloid cells define distinct ESCC subtypes characterized by T cell exhaustion, and interleukin (IL) and interferon (IFN) signaling. Furthermore, this approach classifies ESCC patients into ICI responders and non-responders, as validated by whole tumor transcriptomes and liquid biopsy-based single-cell transcriptomes of anti-PD-1 ICI responders and non-responders. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and potentially predicting ICI responses in ESCC patients.

7.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824935

RESUMEN

Despite the promising outcomes of immune checkpoint blockade (ICB), resistance to ICB presents a new challenge. Therefore, selecting patients for specific ICB applications is crucial for maximizing therapeutic efficacy. Herein we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network transcriptional signatures of T cells, myeloid cells, and fibroblasts define distinct ESCC subtypes characterized by T cell exhaustion, Interferon (IFN) a/b signaling, TIGIT enrichment, and specific marker genes. Furthermore, this approach classifies ESCC patients into ICB responders and non-responders, as validated by liquid biopsy single-cell transcriptomics. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and predicting ICB responses in ESCC patients.

8.
Mol Cancer Res ; 21(7): 741-752, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37027010

RESUMEN

Cancer-associated fibroblasts (CAF) can promote tumor growth, metastasis, and therapeutic resistance in esophageal squamous cell carcinoma (ESCC), but the mechanisms of action remain elusive. Our objective was to identify secreted factor(s) that mediate the communication between CAFs and ESCC tumor cells with the aim of identifying potential druggable targets. Through unbiased cytokine arrays, we have identified CC motif chemokine ligand 5 (CCL5) as a secreted factor that is increased upon co-culture of ESCC cells and CAFs, which we replicated in esophageal adenocarcinoma (EAC) with CAFs. Loss of tumor-cell-derived CCL5 reduces ESCC cell proliferation in vitro and in vivo and we propose this is mediated, in part, by a reduction in ERK1/2 signaling. Loss of tumor-derived CCL5 reduces the percentage of CAFs recruited to xenograft tumors in vivo. CCL5 is a ligand for the CC motif receptor 5 (CCR5), for which a clinically approved inhibitor exists, namely Maraviroc. Maraviroc treatment reduced tumor volume, CAF recruitment, and ERK1/2 signaling in vivo, thus, mimicking the effects observed with genetic loss of CCL5. High CCL5 or CCR5 expression is associated with worse prognosis in low-grade esophageal carcinomas. IMPLICATIONS: These data highlight the role of CCL5 in tumorigenesis and the therapeutic potential of targeting the CCL5-CCR5 axis in ESCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL5/farmacología , Quimiocinas/metabolismo , Quimiocinas/farmacología , Quimiocinas/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Fibroblastos/metabolismo , Ligandos , Maraviroc/metabolismo , Maraviroc/farmacología , Maraviroc/uso terapéutico , Animales
9.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788109

RESUMEN

Increased extracellular matrix (ECM) stiffness has been implicated in esophageal adenocarcinoma (EAC) progression, metastasis, and resistance to therapy. However, the underlying protumorigenic pathways are yet to be defined. Additional work is needed to develop physiologically relevant in vitro 3D culture models that better recapitulate the human tumor microenvironment and can be used to dissect the contributions of matrix stiffness to EAC pathogenesis. Here, we describe a modular, tumor ECM-mimetic hydrogel platform with tunable mechanical properties, defined presentation of cell-adhesive ligands, and protease-dependent degradation that supports robust in vitro growth and expansion of patient-derived EAC 3D organoids (EAC PDOs). Hydrogel mechanical properties control EAC PDO formation, growth, proliferation, and activation of tumor-associated pathways that elicit stem-like properties in the cancer cells, as highlighted through in vitro and in vivo environments. We also demonstrate that the engineered hydrogel serves as a platform for identifying potential therapeutic targets to disrupt the contribution of protumorigenic matrix mechanics in EAC. Together, these studies show that an engineered PDO culture platform can be used to elucidate underlying matrix-mediated mechanisms of EAC and inform the development of therapeutics that target ECM stiffness in EAC.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Hidrogeles , Matriz Extracelular/metabolismo , Adenocarcinoma/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Microambiente Tumoral
10.
Cancer Discov ; 13(12): 2632-2651, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37676642

RESUMEN

TP53 mutations are frequent in esophageal squamous cell carcinoma (ESCC) and other SCCs and are associated with a proclivity for metastasis. Here, we report that colony-stimulating factor-1 (CSF-1) expression is upregulated significantly in a p53-R172H-dependent manner in metastatic lung lesions of ESCC. The p53-R172H-dependent CSF-1 signaling, through its cognate receptor CSF-1R, increases tumor cell invasion and lung metastasis, which in turn is mediated in part through Stat3 phosphorylation and epithelial-to-mesenchymal transition (EMT). In Trp53R172H tumor cells, p53 occupies the Csf-1 promoter. The Csf-1 locus is enriched with histone 3 lysine 27 acetylation (H3K27ac), which is likely permissive for fostering an interaction between bromodomain-containing domain 4 (BRD4) and p53-R172H to regulate Csf-1 transcription. Inhibition of BRD4 not only reduces tumor invasion and lung metastasis but also reduces circulating CSF-1 levels. Overall, our results establish a novel p53-R172H-dependent BRD4-CSF-1 axis that promotes ESCC lung metastasis and suggest avenues for therapeutic strategies for this difficult-to-treat disease. SIGNIFICANCE: The invasion-metastasis cascade is a recalcitrant barrier to effective cancer therapy. We establish that the p53-R172H-dependent BRD4-CSF-1 axis is a mediator of prometastatic properties, correlates with patient survival and tumor stages, and its inhibition significantly reduces tumor cell invasion and lung metastasis. This axis can be exploited for therapeutic advantage. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Pulmonares , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Mutación con Ganancia de Función , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Neuroscience ; 450: 48-56, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32615233

RESUMEN

Reliable and consistent pluripotent stem cell reporter systems for efficient purification and visualization of motor neurons are essential reagents for the study of normal motor neuron biology and for effective disease modeling. To overcome the inherent noisiness of transgene-based reporters, we developed a new series of human induced pluripotent stem cell lines by knocking in tdTomato, Cre, or CreERT2 recombinase into the HB9 (MNX1) or VACHT (SLC18A3) genomic loci. The new lines were validated by directed differentiation into spinal motor neurons and immunostaining for motor neuron markers HB9 and ISL1. To facilitate efficient purification of spinal motor neurons, we further engineered the VACHT-Cre cell line with a validated, conditional CD14-GFP construct that allows for both fluorescence-based identification of motor neurons, as well as magnetic-activated cell sorting (MACS) to isolate differentiated motor neurons at scale. The targeting strategies developed here offer a standardized platform for reproducible comparison of motor neurons across independently derived pluripotent cell lines.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Colinérgicos , Proteínas de Homeodominio , Humanos , Neuronas Motoras , Factores de Transcripción
12.
Life Sci Alliance ; 2(6)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31727800

RESUMEN

Metastasis, the main cause of cancer-related death, has traditionally been viewed as a late-occurring process during cancer progression. Using the MMTV-PyMT luminal B breast cancer model, we demonstrate that the lung metastatic niche is established early during tumorigenesis. We found that matrix metalloproteinase 9 (MMP9) is an important component of the metastatic niche early in tumorigenesis and promotes circulating tumor cells to colonize the lungs. Blocking active MMP9, using a monoclonal antibody specific to the active form of gelatinases, inhibited endogenous and experimental lung metastases in the MMTV-PyMT model. Mechanistically, inhibiting MMP9 attenuated migration, invasion, and colony formation and promoted CD8+ T cell infiltration and activation. Interestingly, primary tumor burden was unaffected, suggesting that inhibiting active MMP9 is primarily effective during the early metastatic cascade. These findings suggest that the early metastatic circuit can be disrupted by inhibiting active MMP9 and warrant further studies of MMP9-targeted anti-metastatic breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias Mamarias Experimentales/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinogénesis , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Metaloproteinasa 9 de la Matriz/inmunología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones Endogámicos , Invasividad Neoplásica , Metástasis de la Neoplasia
13.
Front Cell Dev Biol ; 6: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29546043

RESUMEN

There is a growing list of cancer immunotherapeutics approved for use in a population with an increasing number of aged individuals. Cancer immunotherapy (CIT) mediates tumor destruction by activating anti-tumor immune responses that have been silenced through the oncogenic process. However, in an aging individual, immune deregulation is positively correlated with age. In this context, it is vital to examine the age-related changes in the tumor microenvironment (TME) and specifically, those directly affecting critical players to ensure CIT efficacy. Effector T cells, regulatory T cells, myeloid-derived suppressor cells, tumor-associated macrophages, and tumor-associated neutrophils play important roles in promoting or inhibiting the inflammatory response, while cancer-associated fibroblasts are key mediators of the extracellular matrix (ECM). Immune checkpoint inhibitors function optimally in inflamed tumors heavily invaded by CD4 and CD8 T cells. However, immunosenescence curtails the effector T cell response within the TME and causes ECM deregulation, creating a biophysical barrier impeding both effective drug delivery and pro-inflammatory responses. The ability of the chimeric antigen receptor T (CAR-T) cell to artificially induce an adaptive immune response can be modified to degrade essential components of the ECM and alleviate the age-related changes to the TME. This review will focus on the age-related alterations in ECM and immune-stroma interactions within the TME. We will discuss strategies to overcome the barriers of immunosenescence and matrix deregulation to ameliorate the efficacy of CIT in aged subjects.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda