RESUMEN
We report on the investigation of continuous-wave (CW) and SEmiconductor Saturable Absorber Mirror (SESAM) mode-locked operation of a Yb:GdScO3 laser. Using a single-transverse-mode, fiber-coupled InGaAs laser diode at 976â nm as a pump source, the Yb:GdScO3 laser delivers 343â mW output power at 1062â nm in the CW regime, which corresponds to a slope efficiency of 52%. Continuous tuning is possible across a wavelength range of 84â nm (1027-1111â nm). Using a commercial SESAM to initiate mode-locking and stabilize soliton-type pulse shaping, the Yb:GdScO3 laser produces pulses as short as 42 fs at 1065.9â nm, with an average output power of 40â mW at 66.89â MHz. To the best of our knowledge, this is the first demonstration of passively mode-locking with Yb:GdScO3 crystal.
RESUMEN
We present the growth, spectroscopy, continuous-wave (CW) and passively mode-locked (ML) operation of a novel "mixed" tetragonal calcium rare-earth aluminate crystal, Yb3+:Ca(Gd,Y)AlO4. The absorption, stimulated-emission, and gain cross-sections are derived for π and σ polarizations. The laser performance of a c-cut Yb:Ca(Gd,Y)AlO4 crystal is studied using a spatially single-mode, 976-nm fiber-coupled laser diode as a pump source. A maximum output power of 347â mW is obtained in the CW regime with a slope efficiency of 48.9%. The emission wavelength is continuously tunable across 90â nm (1010 - 1100â nm) using a quartz-based Lyot filter. With a commercial SEmiconductor Saturable Absorber Mirror to initiate and maintain ML operation, soliton pulses as short as 35 fs are generated at 1059.8â nm with an average output power of 51â mW at â¼65.95â MHz. The average output power can be scaled to 105â mW for slightly longer pulses of 42 fs at 1063.5â nm.