Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Mol Phylogenet Evol ; 191: 107993, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103706

RESUMEN

Brisingida Fisher 1928 is one of the seven currently recognised starfish orders, and one of the least known taxa as being exclusive deep-sea inhabitants. Modern deep-sea expeditions revealed their common occurrences in various deep-sea settings including seamounts, basins and hydrothermal vent peripheral, underlining the necessity of clarifying their global diversity and phylogeny. In this study, we present a comprehensive molecular phylogeny of Brisingida which encompasses the highest taxonomic diversity to date. DNA sequences (COI, 16S, 12S and 28S) were obtained from 225 specimens collected in the global ocean, identified as 58 species spanning 15 of the 17 extant genera. Phylogenetic relationship was inferred using both maximum likelihood and Bayesian inference methods, revealing polyphyletic families and genera and indicating nonnegligible bias in prior morphology-based systematics. Based on the new phylogeny, a novel classification of the order, consisting of 5 families and 17 genera, is proposed. Families Odinellidae, Brisingasteridae and Novodiniidae (sensu Clark and Mah, 2001) were resurrected to encompass the genera Odinella, Brisingaster and Novodinia. Brisingidae and Freyellidae were revised to include 11 and 3 genera, respectively. A new genus and species, two new subgenera and seven new combinations are described and a key to each genus and family is provided. Transformations of morphological traits were evaluated under the present phylogenetic hypothesis. A series of paedomorphic characters were found in many genera and species, which led to a high degree of homoplasy across phylogenetically distant groups. Our results provide new insights in the phylogeny and ontogeny of the order, and highlight the necessity to evaluate character convergence under sound phylogenetic hypothesis.


Asunto(s)
Equinodermos , Estrellas de Mar , Humanos , Animales , Equinodermos/genética , Estrellas de Mar/genética , Filogenia , Teorema de Bayes , Secuencia de Bases
2.
Mol Biol Evol ; 38(2): 686-701, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32915961

RESUMEN

Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.


Asunto(s)
Artrópodos/genética , Filogenia , Animales , Femenino , Genoma , Masculino
4.
Nat Commun ; 15(1): 8340, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333524

RESUMEN

A pattern of increasing species richness from the poles to the equator is frequently observed in many animal taxa. Ecological limits, determined by the abiotic conditions and biotic interactions within an environment, are one of the major factors influencing the geographical distribution of species diversity. Energy availability is often considered a crucial limiting factor, with temperature and productivity serving as empirical measures. However, these measures may not fully explain the observed species richness, particularly in marine ecosystems. Here, through a global comparative approach and standardised methodologies, such as Autonomous Reef Monitoring Structures (ARMS) and DNA metabarcoding, we show that the seasonality of primary production explains sessile animal richness comparatively or better than surface temperature or primary productivity alone. A Hierarchical Generalised Additive Model (HGAM) is validated, after a model selection procedure, and the prediction error is compared, following a cross-validation approach, with HGAMs including environmental variables commonly used to explain animal richness. Moreover, the linear effect of production magnitude on species richness becomes apparent only when considered jointly with seasonality, and, by identifying world coastal areas characterized by extreme values of both, we postulate that this effect may result in a positive relationship in environments with lower seasonality.


Asunto(s)
Biodiversidad , Estaciones del Año , Animales , Ecosistema , Arrecifes de Coral , Temperatura , Organismos Acuáticos/fisiología , Código de Barras del ADN Taxonómico
5.
Ecology ; 103(3): e3611, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921398

RESUMEN

Sea stars (Echinodermata: Asteroidea) are a key component of Southern Ocean benthos, with 16% of the known sea star species living there. In temperate marine environments, sea stars commonly play an important role in food webs, acting as keystone species. However, trophic ecology and functional role of Southern Ocean sea stars are still poorly known, notably due to the scarcity of large-scale studies. Here, we report 24,332 trophic marker (stable isotopes and elemental contents of C, N, and S of tegument and/or tube feet) and biometric (arm length, disk radius, arm to disk ratio) measurements in 2,456 specimens of sea stars. Samples were collected between 12 January 1985 and 8 October 2017 in numerous locations along the Antarctic littoral and subantarctic islands. The spatial scope of the data set covers a significant portion of the Southern Ocean (47.717° S to 86.273° S; 127.767° W to 162.201° E; depth, 6-5,338 m). The data set contains 133 distinct taxa, including 72 currently accepted species spanning 51 genera, 20 families, and multiple feeding guilds/functional groups (suspension feeders, sediment feeders, omnivores, predators of mobile or sessile prey). For 505 specimens, mitochondrial CO1 genes were sequenced to confirm and/or refine taxonomic identifications, and those sequences are already publicly available through the Barcode of Life Data System. This number will grow in the future, as molecular analyses are still in progress. Overall, thanks to its large taxonomic, spatial, and temporal extent, as well as its integrative nature (combining genetic, morphological, and ecological data), this data set can be of wide interest to Southern Ocean ecologists, invertebrate zoologists, benthic ecologists, and environmental managers dealing with associated areas. Please cite this data paper in research products derived from the data set, which is freely available without copyright restrictions.


Asunto(s)
Ecosistema , Estrellas de Mar , Animales , Biometría , Cadena Alimentaria , Humanos , Océanos y Mares
6.
Zookeys ; 1113: 1-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762231

RESUMEN

There is a growing interest in the exploitation of deep-sea mineral deposits, particularly on the abyssal seafloor of the central Pacific Clarion-Clipperton Zone (CCZ), which is rich in polymetallic nodules. In order to effectively manage potential exploitation activities, a thorough understanding of the biodiversity, community structure, species ranges, connectivity, and ecosystem functions across a range of scales is needed. The benthic megafauna plays an important role in the functioning of deep-sea ecosystems and represents an important component of the biodiversity. While megafaunal surveys using video and still images have provided insight into CCZ biodiversity, the collection of faunal samples is needed to confirm species identifications to accurately estimate species richness and species ranges, but faunal collections are very rarely carried out. Using a Remotely Operated Vehicle, 55 specimens of benthic megafauna were collected from seamounts and abyssal plains in three Areas of Particular Environmental Interest (APEI 1, APEI 4, and APEI 7) at 3100-5100 m depth in the western CCZ. Using both morphological and molecular evidence, 48 different morphotypes belonging to five phyla were found, only nine referrable to known species, and 39 species potentially new to science. This work highlights the need for detailed taxonomic studies incorporating genetic data, not only within the CCZ, but in other bathyal, abyssal, and hadal regions, as representative genetic reference libraries that could facilitate the generation of species inventories.

7.
Zootaxa ; 4560(1): 51-84, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30790991

RESUMEN

The genus Conocrinus d'Orbigny, 1850 (Crinoidea, Bourgueticrinina) was established on the basis of two aboral cups that had previously been described as Bourgueticrinus thorenti d'Archiac, 1846. One of these (now considered lost) came from the "Rocher du Goulet" at the base of the Biarritz section (Bartonian, Côte des Basques, southwest France). D'Archiac figured only the second cup; this belongs to the d'Orbigny Collection and is still housed in the palaeontological collection of the Muséum national d'Histoire naturelle (Paris) as the lectotype of the species, C. thorenti. It appears that it was collected from Priabonian levels exposed near Castellane (Alpes de Haute Provence, southeast France). New observations on this cup, as well as a detailed study of the characters of aboral cups, columnals and proximal brachials in a few extant and fossil species classically attributed to Conocrinus or to closely related genera such as Democrinus, Rhizocrinus and Tormocrinus, have yielded arguments for a revision of the taxonomy and interrelationships of extant and fossil taxa in the family Bourgueticrinidae. Conocrinus (= Tormocrinus), as here interpreted, includes six Eocene species: C. thorenti, C. archiaci, C. cahuzaci n. sp., C. duperrieri, C. cf. suessi and C. veronensis. Numerous extinct species previously attributed to Conocrinus or Democrinus are here transferred to two new genera which first occur in the lower Paleocene: Paraconocrinus n. gen. (type species: P. pyriformis) and Pseudoconocrinus n. gen. (type species: P. doncieuxi). Aboral cups from the "Rocher du Goulet" (Biarritz) are here assigned to Paraconocrinus pellati n. gen., n. sp., while the Danian species Democrinus maximus is transferred to Pseudoconocrinus n. gen. A new genus, Cherbonniericrinus, is created to accommodate a single extant species, Ch. cherbonnieri, previously attributed to Conocrinus, while the extant genus Rhizocrinus, closely related to Democrinus, is resurrected. Conocrinus and closely related genera are derived from a bourgueticrinine lineage the first record of which is from the lower Campanian, with the new genus Carstenicrinus. These are all attributed to the family Rhizocrinidae which is here considered distinct from the family Bourgueticrinidae. Rhizocrinids rapidly diversified immediately after the Cretaceous-Paleogene (K/Pg) event. Cretaceous taxa previously placed within the family Bourgueticrinidae now appear to be polyphyletic. Some of them do not belong to Bourgueticrinina, such as those of the Dunnicrinus lineage. Interrelationships of Rhizocrinidae and other post-Palaeozoic families having a xenomorphic stalk are discussed.


Asunto(s)
Equinodermos , Fósiles , Animales , Francia , Paris , España
8.
Sci Rep ; 9(1): 8062, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31147605

RESUMEN

In recent years, sea ice cover along coasts of East Antarctica has tended to increase. To understand ecological implications of these environmental changes, we studied benthic food web structure on the coasts of Adélie Land during an event of unusually high sea ice cover (i.e. two successive austral summers without seasonal breakup). We used integrative trophic markers (stable isotope ratios of carbon, nitrogen and sulfur) to build ecological models and explored feeding habits of macroinvertebrates. In total, 28 taxa spanning most present animal groups and functional guilds were investigated. Our results indicate that the absence of seasonal sea ice breakup deeply influenced benthic food webs. Sympagic algae dominated the diet of many key consumers, and the trophic levels of invertebrates were low, suggesting omnivore consumers did not rely much on predation and/or scavenging. Our results provide insights about how Antarctic benthic consumers, which typically live in an extremely stable environment, might adapt their feeding habits in response to sudden changes in environmental conditions and trophic resource availability. They also show that local and/or global trends of sea ice increase in Antarctica have the potential to cause drastic changes in food web structure, and therefore to impact benthic communities.


Asunto(s)
Organismos Acuáticos/fisiología , Seguimiento de Parámetros Ecológicos , Cadena Alimentaria , Cubierta de Hielo , Invertebrados/fisiología , Animales , Regiones Antárticas , Isótopos de Carbono/análisis , Cambio Climático , Conducta Alimentaria , Sedimentos Geológicos/análisis , Modelos Teóricos , Isótopos de Nitrógeno/análisis , Estaciones del Año , Agua de Mar/análisis , Isótopos de Azufre/análisis
9.
Ecol Evol ; 9(15): 8465-8478, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31410254

RESUMEN

Life traits such as reproductive strategy can be determining factors of species evolutionary history and explain the resulting diversity patterns. This can be investigated using phylogeographic analyses of genetic units. In this work, the genetic structure of five asteroid genera with contrasting reproductive strategies (brooding: Diplasterias, Notasterias and Lysasterias versus broadcasting: Psilaster and Bathybiaster) was investigated in the Southern Ocean. Over 1,400 mtDNA cytochrome C oxidase subunit I (COI) sequences were analysed using five species delineation methods (ABGD, ASAP, mPTP, sGMYC and mGMYC), two phylogenetic reconstructions (ML and BA), and molecular clock calibrations, in order to examine the weight of reproductive strategy in the observed differences among phylogeographic patterns. We hypothesised that brooding species would show higher levels of genetic diversity and species richness along with a clearer geographic structuring than broadcasting species. In contrast, genetic diversity and species richness were not found to be significantly different between brooders and broadcasters, but broadcasters are less spatially structured than brooders supporting our initial hypothesis and suggesting more complex evolutionary histories associated to this reproductive strategy. Broadcasters' phylogeography can be explained by different scenarios including deep-sea colonisation routes, bipolarity or cosmopolitanism, and sub-Antarctic emergence for the genus Bathybiaster; Antarctic- New Zealand faunal exchanges across the Polar Front for the genus Psilaster. Brooders' phylogeography could support the previously formulated hypothesis of a past trans-Antarctic seaway established between the Ross and the Weddell seas during the Plio-Pleistocene. Our results also show, for the first time, that the Weddell Sea is populated by a mixed asteroid fauna originating from both the East and West Antarctic.

10.
Ecol Evol ; 8(12): 6210-6225, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29988407

RESUMEN

Marine life of the Southern Ocean has been facing environmental changes and the direct impact of human activities during the past decades. Benthic communities have particularly been affected by such changes although we only slowly understand the effect of environmental changes on species physiology, biogeography, and distribution. Species distribution models (SDM) can help explore species geographic responses to main environmental changes. In this work, we modeled the distribution of four echinoid species with contrasting ecological niches. Models developed for [2005-2012] were projected to different time periods, and the magnitude of distribution range shifts was assessed for recent-past conditions [1955-1974] and for the future, under scenario RCP 8.5 for [2050-2099]. Our results suggest that species distribution shifts are expected to be more important in a near future compared to the past. The geographic response of species may vary between poleward shift, latitudinal reduction, and local extinction. Species with broad ecological niches and not limited by biogeographic barriers would be the least affected by environmental changes, in contrast to endemic species, restricted to coastal areas, which are predicted to be more sensitive.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda