Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Kidney Dis ; 83(2): 183-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37717846

RESUMEN

RATIONALE & OBJECTIVE: Genetic etiologies have been identified among approximately 10% of adults with chronic kidney disease (CKD). However, data are lacking regarding the prevalence of monogenic etiologies especially among members of minority groups. This study characterized the genetic markers among members of an Israeli minority group with end-stage kidney disease (ESKD). STUDY DESIGN: A national-multicenter cross-sectional study of Israeli Druze patients (an Arabic-speaking Near-Eastern transnational population isolate) who are receiving maintenance dialysis for ESKD. All study participants underwent exome sequencing. SETTING & PARTICIPANTS: We recruited 94 adults with ESKD, comprising 97% of the total 97 Druze individuals throughout Israel being treated with dialysis during the study period. PREDICTORS: Demographics and clinical characteristics of kidney disease. OUTCOME: Genetic markers. ANALYTICAL APPROACH: Whole-exome sequencing and the relationship of markers to clinical phenotypes. RESULTS: We identified genetic etiologies in 17 of 94 participants (18%). None had a previous molecular diagnosis. A novel, population-specific, WDR19 homozygous pathogenic variant (p.Cys293Tyr) was the most common genetic finding. Other monogenic etiologies included PKD1, PKD2, type IV collagen mutations, and monogenic forms of noncommunicable diseases. The pre-exome clinical diagnosis corresponded to the final molecular diagnosis in fewer than half of the participants. LIMITATIONS: This study was limited to Druze individuals, so its generalizability may be limited. CONCLUSIONS: Exome sequencing identified a genetic diagnosis in approximately 18% of Druze individuals with ESKD. These results support conducting genetic analyses in minority populations with high rates of CKD and for whom phenotypic disease specificity may be low. PLAIN-LANGUAGE SUMMARY: Chronic kidney disease (CKD) affects many people worldwide and has multiple genetic causes. However, there is limited information on the prevalence of genetic etiologies, especially among minority populations. Our national-multicenter study focused on Israeli Druze patients. Using exome-sequencing, we identified previously undetected genetic causes in nearly 20% of patients, including a new and population-specific WDR19 homozygous pathogenic variant. This mutation has not been previously described; it is extremely rare globally but is common among the Druze, which highlights the importance of studying minority populations with high rates of CKD. Our findings provide insights into the genetic basis of end-stage kidney disease in the Israeli Druze, expand the WDR19 phenotypic spectrum, and emphasize the potential value of genetic testing in such populations.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Adulto , Humanos , Grupos Minoritarios , Israel/epidemiología , Marcadores Genéticos , Estudios Transversales , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/genética , Fallo Renal Crónico/terapia , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/diagnóstico , Poblaciones Minoritarias, Vulnerables y Desiguales en Salud
2.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32668217

RESUMEN

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Mutación/genética , Fenotipo , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre
3.
J Med Genet ; 59(7): 691-696, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34215651

RESUMEN

BACKGROUND: The molecular basis of heterotaxy and congenital heart malformations associated with disruption of left-right asymmetry is broad and heterogenous, with over 25 genes implicated in its pathogenesis thus far. OBJECTIVE: We sought to elucidate the molecular basis of laterality disorders and associated congenital heart defects in a cohort of 30 unrelated probands of Arab-Muslim descent, using next-generation sequencing techniques. METHODS: Detailed clinical phenotyping followed by whole-exome sequencing (WES) was pursued for each of the probands and their parents (when available). Sanger sequencing was used for segregation analysis of disease-causing mutations in the families. RESULTS: Using WES, we reached a molecular diagnosis for 17 of the 30 probands (56.7%). Genes known to be associated with heterotaxy and/or primary ciliary dyskinesia, in which homozygous pathogenic or likely pathogenic variants were detected, included CFAP53 (CCDC11), CFAP298 (C21orf59), CFAP300, LRRC6, GDF1, DNAAF1, DNAH5, CCDC39, CCDC40, PKD1L1 and TTC25. Additionally, we detected a homozygous disease causing mutation in DAND5, as a novel recessive monogenic cause for heterotaxy in humans. Three additional probands were found to harbour variants of uncertain significance. These included variants in DNAH6, HYDIN, CELSR1 and CFAP46. CONCLUSIONS: Our findings contribute to the current knowledge regarding monogenic causes of heterotaxy and its associated congenital heart defects and underscore the role of next-generation sequencing techniques in the diagnostic workup of such patients, and especially among consanguineous families.


Asunto(s)
Cardiopatías Congénitas , Síndrome de Heterotaxia , Estudios de Cohortes , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Mutación/genética , Secuenciación del Exoma
4.
Pediatr Dermatol ; 40(4): 633-636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37029338

RESUMEN

Tuberous sclerosis complex (TSC) is a rare genetic disease with neurocutaneous manifestations, often presenting initially to the dermatology clinic. We report a cohort of neonates who presented with a novel finding of white epidermal nevus and were eventually diagnosed with TSC. White epidermal nevus may be yet another dermatological finding that may aid in the early diagnosis of TSC.


Asunto(s)
Nevo , Esclerosis Tuberosa , Recién Nacido , Humanos , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/diagnóstico , Nevo/diagnóstico , Investigación
5.
Pediatr Nephrol ; 37(7): 1623-1646, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34993602

RESUMEN

BACKGROUND: Genetic kidney diseases contribute a significant portion of kidney diseases in children and young adults. Nephrogenetics is a rapidly evolving subspecialty; however, in the clinical setting, increased use of genetic testing poses implementation challenges. Consequently, we established a national nephrogenetics clinic to apply a multidisciplinary model. METHODS: Patients were referred from different pediatric or adult nephrology units across the country if their primary nephrologist suspected an undiagnosed genetic kidney disease. We determined the diagnostic rate and observed the effect of diagnosis on medical care. We also discuss the requirements of a nephrogenetics clinic in terms of logistics, recommended indications for referral, and building a multidisciplinary team. RESULTS: Over 24 months, genetic evaluation was completed for a total of 74 unrelated probands, with an age range of 10 days to 72 years. The most common phenotypes included congenital anomalies of the kidneys and urinary tract, nephrotic syndrome or unexplained proteinuria, nephrocalcinosis/nephrolithiasis, tubulopathies, and unexplained kidney failure. Over 80% of patients were referred due to clinical suspicion of an undetermined underlying genetic diagnosis. A molecular diagnosis was reached in 42/74 probands, yielding a diagnostic rate of 57%. Of these, over 71% of diagnoses were made via next generation sequencing (gene panel or exome sequencing). CONCLUSIONS: We identified a substantial fraction of genetic kidney etiologies among previously undiagnosed individuals which influenced subsequent clinical management. Our results support that nephrogenetics, a rapidly evolving field, may benefit from well-defined multidisciplinary co-management administered by a designated team of nephrologist, geneticist, and bioinformatician. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Pruebas Genéticas , Enfermedades Renales , Niño , Humanos , Enfermedades Renales/genética , Fenotipo , Derivación y Consulta , Secuenciación del Exoma/métodos
6.
Genet Med ; 23(10): 1922-1932, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34163037

RESUMEN

PURPOSE: CACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype. METHODS: We describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations. RESULTS: Fourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism. CONCLUSION: We expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome.


Asunto(s)
Trastorno Autístico , Canales de Calcio Tipo L , Síndrome de QT Prolongado , Sindactilia , Trastorno Autístico/genética , Canales de Calcio Tipo L/genética , Humanos , Fenotipo
7.
Am J Med Genet A ; 185(12): 3804-3809, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34435740

RESUMEN

Maroteaux-Lamy syndrome (MPS-VI) is a rare autosomal-recessive disorder with a wide spectrum of clinical manifestations, ranging from an attenuated to a rapidly progressive disease. It is caused by variants in ARSB, which encodes the lysosomal arylsulfatase B (ARSB) enzyme, part of the degradation process of glycosaminoglycans in lysosomes. Over 220 variants have been reported so far, with a majority of missense variants. We hereby report two siblings of Bedouin origin with a diagnosis of MPS-VI. Western blots in patient fibroblasts revealed total absence of ARSB protein production. Complete sequencing of the coding region of ARSB did not identify a candidate disease-associated variant. However, deep sequencing of the noncoding region of ARSB by whole genome sequencing (WGS) revealed a c.1142+581A to G variant. The variant is located within intron 5 and fully segregated with the disease in the family. Determination of the genetic cause for these patients enabled targeted treatment by enzyme replacement therapy, along with appropriate genetic counseling and prenatal diagnosis for the family. These results highlight the advantage of WGS as a powerful tool, for improving the diagnostic rate of rare disease-causing variants, and emphasize the importance of studying deep intronic sequence variation as a cause of monogenic disorders.


Asunto(s)
Asesoramiento Genético , Predisposición Genética a la Enfermedad , Mucopolisacaridosis VI/genética , N-Acetilgalactosamina-4-Sulfatasa/genética , Árabes/genética , Preescolar , Exones/genética , Femenino , Humanos , Lactante , Intrones/genética , Masculino , Mucopolisacaridosis VI/patología , Mutación Missense/genética
8.
Harefuah ; 160(12): 839-846, 2021 Dec.
Artículo en Hebreo | MEDLINE | ID: mdl-34957723

RESUMEN

INTRODUCTION: Chronic kidney disease (CKD) in children arises from heterogeneous disease etiologies. A large portion is caused by monogenic diseases, which are also known as single-gene disorders or Mendelian diseases. Understanding the genetic underpinnings of childhood and young adulthood, CKD has increased significantly over the last decade due to increased availability of genetic testing as well as clinician's awareness. This led to the discovery of numerous genes that, if mutated, may lead to early onset CKD. So far, hundreds of CKD-causing genes have been reported, explaining ~30% of cases among children and ~10% in adults. Nonetheless, the genetic diagnostic yield varies markedly across different study cohorts, depending on clinical presentation, geographic region and ethnicity. In clinical practice, the diagnosis of genetic kidney diseases may be challenging due to variable expressivity, incomplete penetrance, low index of suspicion, lack of overt symptoms at early disease stages and insufficient availability of next generation sequencing methods. Detection of monogenic causes of CKD provides definitive diagnosis that might end a long distressing odyssey. It enables personalized surveillance and treatments, spares unnecessary diagnostic procedures such as kidney biopsies, prevents the use of inappropriate therapies, and might also prevent incompatible transplantation from an affected relative. Additionally, it allows family genetic consulting and early diagnosis of asymptomatic family members. The notable progress in the field of genetics in addition to the diagnostic challenges of genetic kidney disease led to the emergence of nephrogenetics - a rapidly evolving subspecialty of nephrology and genetics. Preferably, the management of patients with genetic kidney disease should be multi-disciplinary and include collaboration between nephrologists, geneticists and additional consultants as needed. We anticipate that a routine use of genetic testing for CKD patients, as well as additional advancements in genetic discoveries, will further lead to understanding of genetic CKD patho-mechanisms and to the development of novel gene-based therapies. In this review, we will discuss the genetic basis of CKD in children and young adults. We will also discuss the clinical approach to patients with suspected genetic kidney disease.


Asunto(s)
Insuficiencia Renal Crónica , Adulto , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Riñón , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Adulto Joven
9.
BMC Med Genet ; 20(1): 53, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30922245

RESUMEN

BACKGROUND: Progressive pseudorheumatoid dysplasia (PPRD) is a rare autosomal-recessive, non-inflammatory arthropathy, shown to be caused by mutations in the WNT1-inducible signaling pathway protein 3 (WISP3) gene. Although several hundred cases were reported worldwide, the diagnosis remains challenging. Subsequently, the syndrome is often unrecognized and misdiagnosed (for instance, as Juvenile Idiopathic Arthritis), leading to unnecessary procedures and treatments. The objective of the current study was to identify the molecular basis in a family with PPRD and describe their phenotype and course of illness. PATIENTS AND METHODS: We present here a multiply affected consanguineous family of Iraqi-Jewish descent with PPRD. The proband, a 6.5 years old girl, presented with bilateral symmetric bony enlargements of the 1st interphalangeal joints of the hands, without signs of synovitis. Molecular analysis of the family was pursued using Whole Exome Sequencing (WES) and homozygosity mapping. RESULTS: WES analysis brought to the identification of a novel homozygous missense mutation (c.257G > T, p.C86F) in the WISP3 gene. Following this diagnosis, an additional 53 years old affected family member was found to harbor the mutation. Two other individuals in the family were reported to have had similar involvement however both had died of unrelated causes. CONCLUSION: The reported family underscores the importance of recognition of this unique skeletal dysplasia by clinicians, and especially by pediatric rheumatologists and orthopedic surgeons.


Asunto(s)
Proteínas CCN de Señalización Intercelular/genética , Secuenciación del Exoma/métodos , Artropatías/congénito , Mutación Missense , Niño , Consanguinidad , Diagnóstico Precoz , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Irak/etnología , Judíos/genética , Artropatías/diagnóstico , Artropatías/etnología , Artropatías/genética , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Literatura de Revisión como Asunto
10.
Hum Mutat ; 39(1): 69-79, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29044765

RESUMEN

Primary coenzyme Q10 (CoQ10 ; MIM# 607426) deficiencies are an emerging group of inherited mitochondrial disorders with heterogonous clinical phenotypes. Over a dozen genes are involved in the biosynthesis of CoQ10 , and mutations in several of these are associated with human disease. However, mutations in COQ5 (MIM# 616359), catalyzing the only C-methylation in the CoQ10 synthetic pathway, have not been implicated in human disease. Here, we report three female siblings of Iraqi-Jewish descent, who had varying degrees of cerebellar ataxia, encephalopathy, generalized tonic-clonic seizures, and cognitive disability. Whole-exome and subsequent whole-genome sequencing identified biallelic duplications in the COQ5 gene, leading to reduced levels of CoQ10 in peripheral white blood cells of all affected individuals and reduced CoQ10 levels in the only muscle tissue available from one affected proband. CoQ10 supplementation led to clinical improvement and increased the concentrations of CoQ10 in blood. This is the first report of primary CoQ10 deficiency caused by loss of function of COQ5, with delineation of the clinical, laboratory, histological, and molecular features, and insights regarding targeted treatment with CoQ10 supplementation.


Asunto(s)
Vías Biosintéticas/genética , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Metiltransferasas/deficiencia , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/deficiencia , Ubiquinona/análogos & derivados , Biopsia , Ataxia Cerebelosa/dietoterapia , Ataxia Cerebelosa/metabolismo , Variaciones en el Número de Copia de ADN , Suplementos Dietéticos , Transporte de Electrón , Femenino , Fibroblastos/metabolismo , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucocitos/metabolismo , Metiltransferasas/genética , Encefalomiopatías Mitocondriales/dietoterapia , Encefalomiopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Músculos/patología , Consumo de Oxígeno , Linaje , Polimorfismo de Nucleótido Simple , Hermanos , Ubiquinona/biosíntesis
12.
J Neurol Sci ; 463: 123074, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38968664

RESUMEN

Genetic workup is becoming increasingly common in the clinical assessment of neurological disorders. We evaluated its yield among middle-aged and elderly neurological patients, in a real-world context. This retrospective study included 368 consecutive Israeli patients aged 50 years and older (202 [54.9%] males), who were referred to a single neurogenetics clinic between 2017 and mid-2023. All had neurological disorders, without a previous molecular diagnosis. Demographic, clinical and genetic data were collected from medical records. The mean age at first genetic counseling at the clinic was 62.3 ± 7.8 years (range 50-85 years), and the main indications for referral were neuromuscular, movement and cerebrovascular disorders, as well as cognitive impairment and dementia. Out of the 368 patients, 245 (66.6%) underwent genetic testing that included exome sequencing (ES), analysis of nucleotide repeat expansions, detection of specific mutations, targeted gene panel sequencing or chromosomal microarray analysis. Overall, 80 patients (21.7%) received a molecular diagnosis due to 36 conditions, accounting for 32.7% of the patients who performed genetic testing. The diagnostic rates were highest for neuromuscular (58/186 patients [31.2%] in this group, 39.2% of 148 tested individuals) and movement disorders (14/79 [17.7%] patients, 29.2% of 48 tested), but lower for other disorders. Testing of nucleotide repeat expansions and ES provided a diagnosis to 28/73 (38.4%) and 19/132 (14.4%) individuals, respectively. Based on our findings, genetic workup and testing are useful in the diagnostic process of neurological patients aged ≥50 years, in particular for those with neuromuscular and movement disorders.

13.
JAMA Netw Open ; 7(2): e240146, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386321

RESUMEN

Importance: National implementation of rapid trio genome sequencing (rtGS) in a clinical acute setting is essential to ensure advanced and equitable care for ill neonates. Objective: To evaluate the feasibility, diagnostic efficacy, and clinical utility of rtGS in neonatal intensive care units (NICUs) throughout Israel. Design, Setting, and Participants: This prospective, public health care-based, multicenter cohort study was conducted from October 2021 to December 2022 with the Community Genetics Department of the Israeli Ministry of Health and all Israeli medical genetics institutes (n = 18) and NICUs (n = 25). Critically ill neonates suspected of having a genetic etiology were offered rtGS. All sequencing, analysis, and interpretation of data were performed in a central genomics center at Tel-Aviv Sourasky Medical Center. Rapid results were expected within 10 days. A secondary analysis report, issued within 60 days, focused mainly on cases with negative rapid results and actionable secondary findings. Pathogenic, likely pathogenic, and highly suspected variants of unknown significance (VUS) were reported. Main Outcomes and Measures: Diagnostic rate, including highly suspected disease-causing VUS, and turnaround time for rapid results. Clinical utility was assessed via questionnaires circulated to treating neonatologists. Results: A total of 130 neonates across Israel (70 [54%] male; 60 [46%] female) met inclusion criteria and were recruited. Mean (SD) age at enrollment was 12 (13) days. Mean (SD) turnaround time for rapid report was 7 (3) days. Diagnostic efficacy was 50% (65 of 130) for disease-causing variants, 11% (14 of 130) for VUS suspected to be causative, and 1 novel gene candidate (1%). Disease-causing variants included 12 chromosomal and 52 monogenic disorders as well as 1 neonate with uniparental disomy. Overall, the response rate for clinical utility questionnaires was 82% (107 of 130). Among respondents, genomic testing led to a change in medical management for 24 neonates (22%). Results led to immediate precision medicine for 6 of 65 diagnosed infants (9%), an additional 2 (3%) received palliative care, and 2 (3%) were transferred to nursing homes. Conclusions and Relevance: In this national cohort study, rtGS in critically ill neonates was feasible and diagnostically beneficial in a public health care setting. This study is a prerequisite for implementation of rtGS for ill neonates into routine care and may aid in design of similar studies in other public health care systems.


Asunto(s)
Enfermedad Crítica , Cuidado Intensivo Neonatal , Lactante , Recién Nacido , Femenino , Masculino , Humanos , Estudios de Cohortes , Estudios Prospectivos , Unidades de Cuidado Intensivo Neonatal
14.
EMBO Mol Med ; 15(5): e16775, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37013609

RESUMEN

Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades Musculares , Humanos , Mitocondrias/genética , ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Síndrome , Inestabilidad Genómica
15.
Front Pediatr ; 10: 844845, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433545

RESUMEN

The role of lysine methyltransferases (KMTs) and demethylases (KDMs) in the regulation of chromatin modification is well-established. Recently, deleterious heterozygous variants in KMT5B were implicated in individuals with intellectual disability (ID) and/or autism spectrum disorder. We describe three unrelated patients with global developmental delay (GDD) or ID, macrocephaly and additional features. Using whole exome sequencing, each of the probands was found to harbor a distinct de novo heterozygous disease-causing variant in KMT5B: c.541C > G (p.His181Asp); c.833A > T (p.Asn278Ile); or c.391_394delAAAG (p.Lys131GlufsTer6). We discuss herein their clinical presentations, and compare them to those of previously reported patients. Furthermore, using a three-dimensional computational model of the KMT5B protein, we demonstrate the predicted structural effects of the two missense variants. Our findings support the role of de novo missense and nonsense variants in KMT5B-associated GDD/ID, and suggest that this gene should be considered in the differential diagnosis of neurodevelopmental disorders accompanied by macrocephaly and/or overgrowth.

16.
Front Genet ; 13: 1018062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699461

RESUMEN

Background: Genetic conditions contribute a significant portion of disease etiologies in children admitted to general pediatric wards worldwide. While exome sequencing (ES) has improved clinical diagnosis and management over a variety of pediatric subspecialties, it is not yet routinely used by general pediatric hospitalists. We aim to investigate the impact of exome sequencing in sequencing-naive children suspected of having monogenic disorders while receiving inpatient care. Methods: We prospectively employed exome sequencing in children admitted to the general pediatric inpatient service at a large tertiary medical center in Israel. Genetic analysis was triggered by general and/or subspecialist pediatricians who were part of the primary inpatient team. We determined the diagnostic yield among children who were referred for exome sequencing and observed the effects of genetic diagnosis on medical care. Results: A total of fifty probands were evaluated and exome sequenced during the study period. The most common phenotypes included were neurodevelopmental (56%), gastrointestinal (34%), and congenital cardiac anomalies (24%). A molecular diagnosis was reached in 38% of patients. Among seven patients (37%), the molecular genetic diagnosis influenced subsequent clinical management already during admission or shortly following discharge. Conclusion: We identified a significant fraction of genetic etiologies among undiagnosed children admitted to the general pediatric ward. Our results support that early application of exome sequencing may be maximized by pediatric hospitalists' high index of suspicion for an underlying genetic etiology, prompting an in-house genetic evaluation. This framework should include a multidisciplinary co-management approach of the primary care team working alongside with subspecialties, geneticists and bioinformaticians.

17.
Sci Rep ; 11(1): 19099, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580403

RESUMEN

Exome sequencing (ES) is an important diagnostic tool for individuals with neurodevelopmental disorders (NDD) and/or multiple congenital anomalies (MCA). However, the cost of ES limits the test's accessibility for many patients. We evaluated the yield of publicly funded clinical ES, performed at a tertiary center in Israel, over a 3-year period (2018-2020). Probands presented with (1) moderate-to-profound global developmental delay (GDD)/intellectual disability (ID); or (2) mild GDD/ID with epilepsy or congenital anomaly; and/or (3) MCA. Subjects with normal chromosomal microarray analysis who met inclusion criteria were included, totaling 280 consecutive cases. Trio ES (proband and parents) was the default option. In 252 cases (90.0%), indication of NDD was noted. Most probands were males (62.9%), and their mean age at ES submission was 9.3 years (range 1 month to 51 years). Molecular diagnosis was reached in 109 probands (38.9%), mainly due to de novo variants (91/109, 83.5%). Disease-causing variants were identified in 92 genes, 15 of which were implicated in more than a single case. Male sex, families with multiple-affected members and premature birth were significantly associated with lower ES yield (p < 0.05). Other factors, including MCA and coexistence of epilepsy, autism spectrum disorder, microcephaly or abnormal brain magnetic resonance imaging findings, were not associated with the yield. To conclude, our findings support the utility of clinical ES in a real-world setting, as part of a publicly funded genetic workup for individuals with GDD/ID and/or MCA.


Asunto(s)
Anomalías Múltiples/diagnóstico , Secuenciación del Exoma/economía , Financiación Gubernamental , Pruebas Genéticas/economía , Trastornos del Neurodesarrollo/diagnóstico , Anomalías Múltiples/economía , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Costo-Beneficio , Estudios de Factibilidad , Femenino , Asesoramiento Genético/economía , Asesoramiento Genético/métodos , Asesoramiento Genético/estadística & datos numéricos , Pruebas Genéticas/métodos , Pruebas Genéticas/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Israel , Masculino , Edad Materna , Trastornos del Neurodesarrollo/economía , Trastornos del Neurodesarrollo/genética , Edad Paterna , Embarazo , Diagnóstico Prenatal/economía , Diagnóstico Prenatal/métodos , Evaluación de Programas y Proyectos de Salud , Estudios Retrospectivos , Centros de Atención Terciaria/economía , Centros de Atención Terciaria/estadística & datos numéricos , Secuenciación del Exoma/estadística & datos numéricos , Adulto Joven
18.
Mol Genet Genomic Med ; 7(6): e665, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31020800

RESUMEN

BACKGROUND: Over 500 epigenetic regulators have been identified throughout the human genome. Of these, approximately 30 chromatin modifiers have been implicated thus far in human disease. Recently, variants in BRPF1, encoding a chromatin reader, have been associated with a previously unrecognized autosomal dominant syndrome manifesting with intellectual disability (ID), hypotonia, dysmorphic facial features, ptosis, and/or blepharophimosis in 22 individuals. PATIENTS AND METHODS: We report a multiply affected nonconsanguineous family of mixed Jewish descent who presented due to ID in three male siblings. Molecular analysis of the family was pursued using whole exome sequencing (WES) and subsequent Sanger sequencing. RESULTS: Whole exome sequencing analysis brought to the identification of a novel heterozygous truncating mutation (c.556C>T, p.Q186*) in the BRPF1 gene in the affected siblings and their mother. The four affected individuals showed varying degrees of intellectual disability, distinct facial features including downslanted palpebral fissures, ptosis, and/or blepharophimosis. Their clinical characteristics are discussed in the context of previously reported patients with the BRPF1-related phenotype. CONCLUSION: The reported family contributes to the current knowledge regarding this unique and newly recognized genetic disorder, and further implicates the role of BRPF1 in human brain development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Blefarofimosis/genética , Blefaroptosis/genética , Proteínas de Unión al ADN/metabolismo , Exoma , Familia , Femenino , Humanos , Masculino , Hipotonía Muscular/genética , Anomalías Musculoesqueléticas/genética , Mutación , Proteínas Nucleares/genética , Linaje , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda