Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Proc Biol Sci ; 280(1751): 20122336, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23193127

RESUMEN

An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed.


Asunto(s)
Adaptación Biológica/fisiología , Hormigas/parasitología , Mariposas Diurnas/fisiología , Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Especificidad del Huésped/fisiología , Conducta Social , Animales , ADN Mitocondrial/genética , Interacciones Huésped-Parásitos , Hidrocarburos/metabolismo , Larva/metabolismo , Repeticiones de Microsatélite/genética , Polonia , España , Especificidad de la Especie , Análisis de Supervivencia
2.
Am Nat ; 179(1): 110-23, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22173464

RESUMEN

Numerous invertebrates inhabit social insect colonies, including the hoverfly genus Microdon, whose larvae typically live as brood predators. Formica lemani ant colonies apparently endure Microdon mutabilis infections over several years, despite losing a considerable fraction of young, and may even produce more gynes. We present a model for resource allocation within polygynous ant colonies, which assumes that whether an ant larva switches development into a worker or a gyne depends on the quantity of food received randomly from workers. Accordingly, Microdon predation promotes gyne development by increasing resource availability for surviving broods. Several model predictions are supported by empirical data. (i) Uninfected colonies seldom produce gynes. (ii) Infected colonies experience a short-lived peak in gyne production leading to a bimodal distribution in gyne production. (iii) Low brood : worker ratio is the critical mechanism controlling gyne production. (iv) Brood : worker ratio reduction must be substantial for increased gyne production to become noticeable.


Asunto(s)
Hormigas/parasitología , Dípteros/fisiología , Cadena Alimentaria , Animales , Larva/fisiología , Modelos Biológicos , Densidad de Población , Dinámica Poblacional , Conducta Predatoria , Reproducción , Factores de Tiempo
3.
Philos Trans R Soc Lond B Biol Sci ; 374(1769): 20180202, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30967080

RESUMEN

The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated. Maculinea (= Phengaris) butterflies are brood parasites of Myrmica ants that are patchily distributed across the Palæarctic and have been studied extensively in Europe. Here, we review the published records of ant host use by the European Maculinea species, as well as providing new host ant records for more than 100 sites across Europe. This comprehensive survey demonstrates that while all but one of the Myrmica species found on Maculinea sites have been recorded as hosts, the most common is often disproportionately highly exploited. Host sharing and host switching are both relatively common, but there is evidence of specialization at many sites, which varies among Maculinea species. We show that most Maculinea display the features expected for coevolution to occur in a geographic mosaic, which has probably allowed these rare butterflies to persist in Europe. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.


Asunto(s)
Hormigas/parasitología , Coevolución Biológica , Mariposas Diurnas/fisiología , Interacciones Huésped-Parásitos , Comportamiento de Nidificación , Simbiosis , Animales , Europa (Continente) , Especificidad de la Especie
4.
Am Nat ; 169(4): 466-80, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17269113

RESUMEN

Caterpillars of the butterfly Maculinea rebeli develop as parasites inside ant colonies. In intensively studied French populations, about 25% of caterpillars mature within 1 year (fast-developing larvae [FDL]) and the others after 2 years (slow-developing larvae [SDL]); all available evidence indicates that this ratio is under the control of egg-laying females. We present an analytical model to predict the evolutionarily stable fraction of FDL (pESS). The model accounts for added winter mortality of SDL, general and kin competition among caterpillars, a competitive advantage of SDL over newly entering FDL (priority effect), and the avoidance of renewed infection of ant nests by butterflies in the coming season (segregation). We come to the following conclusions: (1) all factors listed above can promote the evolution of delayed development; (2) kin competition and segregation stabilize pESS near 0.5; and (3) a priority effect is the only mechanism potentially selecting for pESS < 0.5. However, given the empirical data, pESS is predicted to fall closer to 0.5 than to the 0.25 that has been observed. In this particular system, bet hedging cannot explain why more than 50% of larvae postpone growth. Presumably, other fitness benefits for SDL, for example, higher fertility or longevity, also contribute to the evolution of delayed development. The model presented here may be of general applicability for systems where maturing individuals compete in small subgroups.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Mariposas Diurnas/crecimiento & desarrollo , Modelos Biológicos , Simbiosis , Animales , Hormigas/fisiología , Simulación por Computador , Francia , Larva/crecimiento & desarrollo , Selección Genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda