Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34531324

RESUMEN

Abscisic acid (ABA) is a key plant hormone that mediates both plant biotic and abiotic stress responses and many other developmental processes. ABA receptor antagonists are useful for dissecting and manipulating ABA's physiological roles in vivo. We set out to design antagonists that block receptor-PP2C interactions by modifying the agonist opabactin (OP), a synthetically accessible, high-affinity scaffold. Click chemistry was used to create an ∼4,000-member library of C4-diversified opabactin derivatives that were screened for receptor antagonism in vitro. This revealed a peptidotriazole motif shared among hits, which we optimized to yield antabactin (ANT), a pan-receptor antagonist. An X-ray crystal structure of an ANT-PYL10 complex (1.86 Å) reveals that ANT's peptidotriazole headgroup is positioned to sterically block receptor-PP2C interactions in the 4' tunnel and stabilizes a noncanonical closed-gate receptor conformer that partially opens to accommodate ANT binding. To facilitate binding-affinity studies using fluorescence polarization, we synthesized TAMRA-ANT. Equilibrium dissociation constants for TAMRA-ANT binding to Arabidopsis receptors range from ∼400 to 1,700 pM. ANT displays improved activity in vivo and disrupts ABA-mediated processes in multiple species. ANT is able to accelerate seed germination in Arabidopsis, tomato, and barley, suggesting that it could be useful as a germination stimulant in species where endogenous ABA signaling limits seed germination. Thus, click-based diversification of a synthetic agonist scaffold allowed us to rapidly develop a high-affinity probe of ABA-receptor function for dissecting and manipulating ABA signaling.


Asunto(s)
Ácido Abscísico/antagonistas & inhibidores , Quinolinas/síntesis química , Triazoles/síntesis química , Ácido Abscísico/agonistas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Benzamidas/síntesis química , Benzamidas/química , Proteínas Portadoras/metabolismo , Química Clic/métodos , Ciclohexanos/síntesis química , Ciclohexanos/química , Expresión Génica , Germinación , Modelos Moleculares , Reguladores del Crecimiento de las Plantas/metabolismo , Quinolinas/farmacología , Semillas/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Triazoles/farmacología
2.
Mol Plant Microbe Interact ; 27(7): 747-56, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24654979

RESUMEN

The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and N. benthamiana. Together, these results demonstrate a role for Mp55, a protein with as-yet-unknown molecular function, in the interaction of M. persicae with its host plants.


Asunto(s)
Áfidos/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Nicotiana/metabolismo , Animales , Arabidopsis/fisiología , Buchnera/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reproducción , Nicotiana/genética
3.
J Chem Ecol ; 40(8): 869-77, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25082103

RESUMEN

Lineages of the generalist hemipteran herbivore Myzus persicae (green peach aphid) that have expanded their host range to include tobacco often have elevated nicotine tolerance. The tobacco-adapted M. persicae lineage used in this study was able to reproduce on nicotine-containing artificial diets at concentrations that were 15-fold higher than those that were lethal to a non-adapted M. persicae lineage. Fecundity of the nicotine-tolerant M. persicae lineage was increased by 100 µM nicotine in artificial diet, suggesting that this otherwise toxic alkaloid can serve as a feeding stimulant at low concentrations. This lineage also was pre-adapted to growth on tobacco, exhibiting no drop in fecundity when it was moved onto tobacco from a different host plant. Although growth of the non-tobacco-adapted M. persicae lineage improved after three generations on tobacco, this higher reproductive rate was not associated with increased nicotine tolerance. Myzus persicae gene expression microarrays were used to identify transcripts that are up-regulated in response to nicotine in the tobacco-adapted lineage. Induced expression was found for CYP6CY3, which detoxifies nicotine in M. persicae, other genes encoding known classes of detoxifying enzymes, and genes encoding secreted M. persicae salivary proteins.


Asunto(s)
Adaptación Fisiológica , Áfidos/fisiología , Conducta Alimentaria , Cadena Alimentaria , Nicotina/metabolismo , Animales , Áfidos/genética , Áfidos/crecimiento & desarrollo , Dieta , Nicotiana/química
4.
Proc Natl Acad Sci U S A ; 107(20): 9464-9, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20439724

RESUMEN

Endosperm and embryo tissues from the seeds of Euonymus alatus (Burning Bush) accumulate high levels of 3-acetyl-1,2-diacyl-sn-glycerols (acTAGs) as their major storage lipids. In contrast, the aril tissue surrounding the seed produces long-chain triacylglycerols (lcTAGs) typical of most other organisms. The presence of the sn-3 acetyl group imparts acTAGs with different physical and chemical properties, such as a 30% reduction in viscosity, compared to lcTAGs. Comparative transcriptome analysis of developing endosperm and aril tissues using pyrosequencing technology was performed to isolate the enzyme necessary for the synthesis of acTAGs. An uncharacterized membrane-bound O-acyltransferase (MBOAT) family member was the most abundant acyltransferase in the endosperm but was absent from the aril. Expression of this MBOAT in yeast resulted in the accumulation of acTAGs but not lcTAG; hence, the enzyme was named EaDAcT (Euonymus alatus diacylglycerol acetyltransferase). Yeast microsomes expressing EaDAcT possessed acetyl-CoA diacylglycerol acetyltransferase activity but lacked long-chain acyl-CoA diacylglycerol acyltransferase activity. Expression of EaDAcT under the control of a strong, seed-specific promoter in Arabidopsis resulted in the accumulation of acTAGs, up to 40 mol % of total TAG in the seed oil. These results demonstrate the utility of deep transcriptional profiling with multiple tissues as a gene discovery strategy for low-abundance proteins. They also show that EaDAcT is the acetyltransferase necessary and sufficient for the production of acTAGs in Euonymus seeds, and that this activity can be introduced into the seeds of other plants, allowing the evaluation of these unusual TAGs for biofuel and other applications.


Asunto(s)
Biocombustibles , Diacilglicerol O-Acetiltransferasa/metabolismo , Diglicéridos/biosíntesis , Euonymus/enzimología , Aceites de Plantas , Semillas/enzimología , Secuencia de Aminoácidos , Arabidopsis , Secuencia de Bases , Biología Computacional , Cartilla de ADN/genética , ADN Complementario/genética , Diacilglicerol O-Acetiltransferasa/genética , Euonymus/metabolismo , Perfilación de la Expresión Génica , Funciones de Verosimilitud , Espectrometría de Masas , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Semillas/metabolismo , Análisis de Secuencia de ADN , Viscosidad , Levaduras
5.
ACS Chem Biol ; 14(3): 332-336, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668093

RESUMEN

Pyrabactin resistance 1 (PYR1) and related abscisic acid (ABA) receptors are new targets for manipulating plant drought tolerance. Here, we identify and use PYR1 hypersensitive mutants to define ligand binding hotspots and show that these can guide improvements in agonist potency. One hotspot residue defined, A160, is part of a pocket that is occupied by ABA's C6 methyl or by the toluyl methyl of the synthetic agonist quinabactin (QB). A series of QB analogues substituted at the toluyl position were synthesized and provide up to 10-fold gain in activity in vitro. Furthermore, we demonstrate that hypersensitive receptors can be used to improve the sensitivity of a previously described mammalian cell ABA-regulated transcriptional circuit by three orders of magnitude. Collectively, our data show that the systematic mapping of hypersensitivity sites in a ligand-binding pocket can help guide ligand optimization and tune the sensitivity of engineered receptors.


Asunto(s)
Proteínas de Arabidopsis/agonistas , Quinolonas/química , Quinolonas/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligandos , Proteínas de Transporte de Membrana/metabolismo , Simulación de Dinámica Molecular , Plantas Modificadas Genéticamente/metabolismo
6.
Science ; 366(6464)2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31649167

RESUMEN

Drought causes crop losses worldwide, and its impact is expected to increase as the world warms. This has motivated the development of small-molecule tools for mitigating the effects of drought on agriculture. We show here that current leads are limited by poor bioactivity in wheat, a widely grown staple crop, and in tomato. To address this limitation, we combined virtual screening, x-ray crystallography, and structure-guided design to develop opabactin (OP), an abscisic acid (ABA) mimic with up to an approximately sevenfold increase in receptor affinity relative to ABA and up to 10-fold greater activity in vivo. Studies in Arabidopsis thaliana reveal a role of the type III receptor PYRABACTIN RESISTANCE-LIKE 2 for the antitranspirant efficacy of OP. Thus, virtual screening and structure-guided optimization yielded newly discovered agonists for manipulating crop abiotic stress tolerance and water use.


Asunto(s)
Ácido Abscísico/análogos & derivados , Proteínas de Arabidopsis/agonistas , Arabidopsis/efectos de los fármacos , Benzamidas/farmacología , Ciclohexanos/farmacología , Hormonas/farmacología , Receptores de Superficie Celular/agonistas , Estrés Fisiológico/efectos de los fármacos , Agua/fisiología , Arabidopsis/fisiología , Benzamidas/química , Ciclohexanos/química , Sequías , Hormonas/química , Solanum lycopersicum/fisiología , Modelos Moleculares , Transpiración de Plantas/efectos de los fármacos , Triticum/fisiología
7.
ACS Chem Biol ; 12(11): 2842-2848, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28949512

RESUMEN

Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.


Asunto(s)
Ácido Abscísico/metabolismo , Agroquímicos/metabolismo , Proteínas de Arabidopsis/agonistas , Arabidopsis/efectos de los fármacos , Proteínas de Transporte de Membrana/agonistas , Estomas de Plantas/efectos de los fármacos , Sulfonamidas/metabolismo , Agroquímicos/química , Arabidopsis/fisiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Sequías , Ligandos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Naftalenos/química , Naftalenos/metabolismo , Estomas de Plantas/fisiología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Sulfonamidas/química
8.
Curr Opin Plant Biol ; 16(4): 451-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23850072

RESUMEN

Aphid salivary proteins, which are injected into the phloem sieve elements during feeding, play a central role in plant-aphid interactions. Among the dozens of known salivary proteins, many have no homology to proteins from other organisms. These aphid-specific proteins likely have evolved as effectors that inhibit plant defenses, prevent phloem sieve-element occlusion, and otherwise promote the unique phloem feeding style. However, aphid salivary proteins also are recognized by plants to mount defense responses and are likely a major factor in limiting the host range of particular aphid species and biotypes. Newly developed research tools provide excellent opportunities for analyzing the mostly unknown functions of aphid salivary proteins and elucidating their contribution to the complex interactions between aphids and their host plants.


Asunto(s)
Áfidos/fisiología , Embryophyta/fisiología , Herbivoria , Proteínas de Insectos/genética , Proteínas y Péptidos Salivales/genética , Animales , Áfidos/genética , Proteínas de Insectos/metabolismo , Floema , Proteínas y Péptidos Salivales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda