Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Langmuir ; 40(5): 2632-2645, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252152

RESUMEN

Four FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups of tricatecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and trihydroxamate type artificial siderophores (K3[FeIIILC3], K2[FeIIILC2H1], K[FeIIILC1H2], and [FeIIILH3]) were modified on Au substrate surfaces. Their abilities to adsorb microorganisms were investigated using scanning electron microscopy, quartz crystal microbalance, and AC impedance methods. The artificial siderophore-iron complexes modified on Au substrates (FeLC3/Au, FeLC2H1/Au, FeLC1H2/Au, and FeLH3/Au) showed the selective immobilization behavior for various microorganisms, depending on the structural features of the artificial siderophores (the number of catecholate and hydroxamate arms). Their specificities corresponded well with the structural characteristics of natural siderophores released by microorganisms and used for FeIII ion uptake. These findings suggest that they were generated via specific interactions between the artificial siderophore-FeIII complexes and the receptors on microorganism surfaces. Our observations revealed that the FeL/Au systems may be potentially used as effective microbe-capturing probes that can enable rapid and simple detection and identification of various microorganisms.


Asunto(s)
Compuestos Férricos , Sideróforos , Sideróforos/química , Compuestos Férricos/química , Hierro , Ácidos Hidroxámicos , Transporte Biológico
2.
Yakugaku Zasshi ; 144(6): 643-650, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38825473

RESUMEN

Inspired by the mechanism by which microorganisms utilize siderophores to ingest iron, four different FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups, K3[FeIII-LC3], K2[FeIII-LC2H1], K[FeIII-LC1H2], and [FeIII-LH3], were prepared. They were modified on an Au substrate surface (Fe-L/Au) and applied as microorganism immobilization devices for fast, sensitive, selective detection of microorganisms, where H6LC3, H5LC2H1, H4LC1H2, and H3LH3 denote the tri-catecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and tri-hydroxamate type of artificial siderophores, respectively. Their adsorption properties for the several microorganisms were investigated using scanning electron microscopy (SEM), quartz crystal microbalance (QCM), and electric impedance spectroscopy (EIS) methods. The artificial siderophore-iron complexes modified on the Au substrates Fe-LC3/Au, Fe-LC2H1/Au, Fe-LC1H2/Au, and Fe-LH3/Au showed specific microorganism immobilization behavior with selectivity based on the structure of the artificial siderophores. Their specificities corresponded well with the structural characteristics of natural siderophores that microorganisms release from the cell and/or use to take up an iron. These findings suggest that release and uptake are achieved through specific interactions between the artificial siderophore-FeIII complexes and receptors on the cell surfaces of microorganisms. This study revealed that Fe-L/Au systems have specific potential to serve as effective immobilization probes of microorganisms for rapid, selective detection and identification of a variety of microorganisms.


Asunto(s)
Sideróforos , Oro , Hierro , Adsorción , Células Inmovilizadas , Tecnicas de Microbalanza del Cristal de Cuarzo , Microscopía Electrónica de Rastreo , Ligandos , Catecoles , Ácidos Hidroxámicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda