Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cancer Res ; 61(9): 3837-43, 2001 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11325860

RESUMEN

Epidermal growth factor receptor (EGFR) levels are dramatically increased in human keratinocytes (HKc) immortalized with full-length human papillomavirus type 16 (HPV16) DNA (HKc/HPV16), but increases in EGFR levels actually precede immortalization. In some normal HKc strains, acute expression of HPV16 E6 (but not HPV16 E5, HPV16 E7, or HPV6 E6) from LXSN retroviral vectors produced an increase in EGFR mRNA levels detectable at 24 h and stable for up to 10 days after infection. However, about one-half of the individual normal HKc strains we analyzed proved unresponsive to E6 induction of EGFR mRNA despite the robust expression of E6 and degradation of p53. E6 responsiveness of normal HKc strains correlated inversely with initial EGFR levels: although HKc strains expressing relatively low basal EGFR levels grew poorly and tolerated the infection protocol with difficulty, they responded to E6 with an increase in EGFR mRNA and protein and with robust proliferation. However, those HKc strains expressing high basal EGFR levels grew well, but did not respond to E6 with increased EGFR levels or with proliferation. Immunostaining of paraffin-embedded foreskin tissue for the EGFR confirmed that there is an intrinsic interindividual variability of EGFR expression in HKC: These results prompted us to investigate the effects of overexpression of the EGFR in normal HKC: Infection of normal HKc with a LXSN retrovirus expressing the full-length human EGFR cDNA resulted in a dramatic reduction in growth rate and a shorter life span. Although acute expression (1-10 days after infection) of HPV16 E7 alone did not induce the EGFR, acute expression of E6 and E7 together increased EGFR levels in normal HKc unresponsive to E6 alone. Also, HKc infected with E7 alone expressed increased EGFR levels at early stages of extended life span (at passage 9 after infection), and HKc immortalized by HPV16 E7 alone expressed EGFR levels comparable with those of E6/E7-immortalized cells. These results support a key role of the EGFR in HPV16-mediated transformation of HKC: In addition, these data show that normal HKc do not tolerate excessive EGFR levels/signaling, and such intolerance must be overcome in order for HKc to become immortalized by HPV16. We conclude that both E6 and E7 contribute to increasing EGFR levels, but with different mechanisms: although E6 can increase EGFR levels, it cannot overcome the resistance of normal HKc to excessive EGFR signaling. On the other hand E7, which alone does not acutely increase EGFR mRNA or protein, allows for EGFR overexpression in normal HKC:


Asunto(s)
Transformación Celular Viral/fisiología , Receptores ErbB/fisiología , Queratinocitos/citología , Proteínas Oncogénicas Virales/fisiología , ARN Mensajero/metabolismo , Proteínas Represoras , Supervivencia Celular/fisiología , Transformación Celular Viral/genética , Células Cultivadas , ADN Viral/genética , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Regulación Viral de la Expresión Génica , Humanos , Queratinocitos/fisiología , Queratinocitos/virología , Proteínas Oncogénicas Virales/biosíntesis , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Proteínas E7 de Papillomavirus , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transducción de Señal/fisiología , Transfección
2.
Virology ; 270(2): 397-407, 2000 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-10792999

RESUMEN

In our in vitro model of human cell carcinogenesis, normal human foreskin keratinocytes (HKc) transfected with human papillomavirus type 16 DNA (HKc/HPV16) progress toward malignancy through several phenotypically defined and reproducible "steps" that include immortalization, growth factor independence (HKc/GFI), differentiation resistance (HKc/DR), and ultimately malignant conversion. While HKc/HPV16 are very sensitive to growth inhibition by all-trans-retinoic acid (RA) at early passages, they lose their sensitivity to RA during progression in culture. However, gel mobility shift assays using the retinoid response elements DR1 and DR5 showed no changes in binding activity of nuclear extracts obtained from HKc/HPV16 at different stages of in vitro progression. Similarly, Western blot analyses for retinoic acid receptor gamma-1 and the retinoid X receptors failed to reveal any decreases in the levels of these retinoid receptors throughout progression. In addition, luciferase activity driven by the SV40 promoter with a DR5 enhancer element was activated following RA treatment of HKc/DR that were resistant to growth inhibition by RA. Since RA induces transforming growth factor-beta2 (TGF-beta2) in normal HKc and HKc/HPV16, we investigated whether this response changed during progression. Again, RA induced TGF-beta2 mRNA in early and late passage HKc/HPV16, HKc/GFI, and HKc/DR approximately to the same extent, confirming that the RA signaling pathways remained intact during in vitro progression despite the fact that the cells become resistant to growth inhibition by RA. We then investigated the sensitivity of HKc/HPV16 to growth inhibition by TGF-beta. While early passage HKc/HPV16 were as sensitive as normal HKc to growth inhibition by TGF-beta1 and TGF-beta2, the cells became increasingly resistant to both TGF-beta isotypes during in vitro progression. In addition, while both RA and TGF-beta produced a decrease in the levels of mRNA for the HPV16 oncogenes E6 and E7 in early passage HKc/HPV16, this effect was also lost at later stages of progression. Finally, blocking anti-TGF-beta antibodies partially prevented RA inhibition of growth and E6/E7 expression in early passage HKc/HPV16. Taken together, these data strongly suggest that inhibition of growth and HPV16 early gene expression in HKc/HPV16 by RA is mediated by TGF-beta and that a loss of RA sensitivity is linked to TGF-beta resistance rather than alterations in RA signaling.


Asunto(s)
Antineoplásicos/farmacología , Transformación Celular Viral , Queratinocitos/virología , Papillomaviridae , Factor de Crecimiento Transformador beta/farmacología , Tretinoina/farmacología , División Celular/efectos de los fármacos , Células Cultivadas , Resistencia a Antineoplásicos , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda