Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Dent Res ; 101(4): 465-472, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34689653

RESUMEN

Risk loci identified through genome-wide association studies have explained about 25% of the phenotypic variations in nonsyndromic orofacial clefts (nsOFCs) on the liability scale. Despite the notable sex differences in the incidences of the different cleft types, investigation of loci for sex-specific effects has been understudied. To explore the sex-specific effects in genetic etiology of nsOFCs, we conducted a genome-wide gene × sex (GxSex) interaction study in a sub-Saharan African orofacial cleft cohort. The sample included 1,019 nonsyndromic orofacial cleft cases (814 cleft lip with or without cleft palate and 205 cleft palate only) and 2,159 controls recruited from 3 sites (Ethiopia, Ghana, and Nigeria). An additive logistic model was used to examine the joint effects of the genotype and GxSex interaction. Furthermore, we examined loci with suggestive significance (P < 1E-5) in the additive model for the effect of the GxSex interaction only. We identified a novel risk locus on chromosome 8p22 with genome-wide significant joint and GxSex interaction effects (rs2720555, p2df = 1.16E-08, pGxSex = 1.49E-09, odds ratio [OR] = 0.44, 95% CI = 0.34 to 0.57). For males, the risk of cleft lip with or without cleft palate at this locus decreases with additional copies of the minor allele (p < 0.0001, OR = 0.60, 95% CI = 0.48 to 0.74), but the effect is reversed for females (p = 0.0004, OR = 1.36, 95% CI = 1.15 to 1.60). We replicated the female-specific effect of this locus in an independent cohort (p = 0.037, OR = 1.30, 95% CI = 1.02 to 1.65), but no significant effect was found for the males (p = 0.29, OR = 0.86, 95% CI = 0.65 to 1.14). This locus is in topologically associating domain with craniofacially expressed and enriched genes during embryonic development. Rare coding mutations of some of these genes were identified in nsOFC cohorts through whole exome sequencing analysis. Our study is additional proof that genome-wide GxSex interaction analysis provides an opportunity for novel findings of loci and genes that contribute to the risk of nsOFCs.


Asunto(s)
Labio Leporino , Fisura del Paladar , Labio Leporino/genética , Fisura del Paladar/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
2.
J Dent Res ; 97(1): 41-48, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28886269

RESUMEN

In contrast to the progress that has been made toward understanding the genetic etiology of cleft lip with or without cleft palate, relatively little is known about the genetic etiology for cleft palate only (CPO). A common coding variant of grainyhead like transcription factor 3 ( GRHL3) was recently shown to be associated with risk for CPO in Europeans. Mutations in this gene were also reported in families with Van der Woude syndrome. To identify rare mutations in GRHL3 that might explain the missing heritability for CPO, we sequenced GRHL3 in cases of CPO from Africa. We recruited participants from Ghana, Ethiopia, and Nigeria. This cohort included case-parent trios, cases and other family members, as well as controls. We sequenced exons of this gene in DNA from a total of 134 nonsyndromic cases. When possible, we sequenced them in parents to identify de novo mutations. Five novel mutations were identified: 2 missense (c.497C>A; p.Pro166His and c.1229A>G; p.Asp410Gly), 1 splice site (c.1282A>C p.Ser428Arg), 1 frameshift (c.470delC; p.Gly158Alafster55), and 1 nonsense (c.1677C>A; p.Tyr559Ter). These mutations were absent from 270 sequenced controls and from all public exome and whole genome databases, including the 1000 Genomes database (which includes data from Africa). However, 4 of the 5 mutations were present in unaffected mothers, indicating that their penetrance is incomplete. Interestingly, 1 mutation damaged a predicted sumoylation site, and another disrupted a predicted CK1 phosphorylation site. Overexpression assays in zebrafish and reporter assays in vitro indicated that 4 variants were functionally null or hypomorphic, while 1 was dominant negative. This study provides evidence that, as in Caucasian populations, mutations in GRHL3 contribute to the risk of nonsyndromic CPO in the African population.


Asunto(s)
Población Negra/genética , Fisura del Paladar/genética , Proteínas de Unión al ADN/genética , Mutación con Pérdida de Función/genética , Factores de Transcripción/genética , Animales , Codón sin Sentido/genética , Mutación del Sistema de Lectura/genética , Estudio de Asociación del Genoma Completo , Humanos , Mutagénesis Sitio-Dirigida , Mutación Missense/genética , Sitios de Empalme de ARN/genética , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda