Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33637576

RESUMEN

More than 30,000 tons of menthol are produced every year as a flavor and fragrance compound or as a medical component. So far, only extraction from plant material and chemical synthesis are possible. An alternative approach for menthol production could be a biotechnological-chemical process with ideally only two conversion steps, starting from (+)-limonene, which is a side product of the citrus processing industry. The first step requires a limonene-3-hydroxylase (L3H) activity that specifically catalyzes hydroxylation of limonene at carbon atom 3. Several protein engineering strategies have already attempted to create limonene-3-hydroxylases from bacterial cytochrome P450 monooxygenases (CYPs, or P450s), which can be efficiently expressed in bacterial hosts. However, their regiospecificity is rather low compared to that of the highly selective L3H enzymes from the biosynthetic pathway for menthol in Mentha species. The only naturally occurring limonene-3-hydroxylase activity identified in microorganisms so far was reported for a strain of the black yeast-like fungus Hormonema sp. in South Africa. We have discovered additional fungi that can catalyze the intended reaction and identified potential CYP-encoding genes within the genome sequence of one of the strains. Using heterologous gene expression and biotransformation experiments in yeasts, we were able to identify limonene-3-hydroxylases from Aureobasidium pullulans and Hormonema carpetanum Further characterization of the A. pullulans enzyme demonstrated its high stereospecificity and regioselectivity, its potential for limonene-based menthol production, and its additional ability to convert α- and ß-pinene to verbenol and pinocarveol, respectively.IMPORTANCE (-)-Menthol is an important flavor and fragrance compound and furthermore has medicinal uses. To realize a two-step synthesis starting from renewable (+)-limonene, a regioselective limonene-3-hydroxylase enzyme is necessary. We identified enzymes from two different fungi which catalyze this hydroxylation reaction and represent an important module for the development of a biotechnological process for (-)-menthol production from renewable (+)-limonene.


Asunto(s)
Ascomicetos/enzimología , Aureobasidium/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Limoneno/metabolismo , Mentol/metabolismo , Ascomicetos/genética , Aureobasidium/genética , Biotransformación , Catálisis , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Hidroxilación , Microbiología Industrial
2.
Yeast ; 32(1): 3-16, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25393382

RESUMEN

Kluyveromyces marxianus is emerging as a new platform organism for the production of flavour and fragrance (F&F) compounds. This food-grade yeast has advantageous traits, such as thermotolerance and rapid growth, that make it attractive for cell factory applications. The major impediment to its development has been limited fundamental knowledge of its genetics and physiology, but this is rapidly changing. K. marxianus produces a wide array of volatile molecules and contributes to the flavour of a range of different fermented beverages. Advantage is now being taken of this to develop strains for the production of metabolites such as 2-phenylethanol and ethyl acetate. Strains that were selected from initial screens were used to optimize processes for production of these F&F molecules. Most developments have focused on optimizing growth conditions and the fermentation process, including product removal, with future advancement likely to involve development of new strains through the application of evolutionary or rational engineering strategies. This is being facilitated by new genomic and molecular tools. Furthermore, synthetic biology offers a route to introduce new biosynthetic pathways into this yeast for F&F production. Consumer demand for biologically-synthesized molecules for use in foods and other products creates an opportunity to exploit the unique potential of K. marxianus for this cell factory application.


Asunto(s)
Aromatizantes/metabolismo , Kluyveromyces/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Fermentación , Microbiología Industrial , Kluyveromyces/genética
3.
J Ind Microbiol Biotechnol ; 39(12): 1761-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22903341

RESUMEN

Linalool oxides are of interest to the flavour industry because of their lavender notes. Corynespora cassiicola DSM 62475 has been identified recently as a production organism because of high stereoselectivity and promising productivities [Mirata et al. (2008) J Agric Food Chem 56(9):3287-3296]. In this work, the stereochemistry of this biotransformation was further investigated. Predominantly (2R)-configured linalool oxide enantiomers were produced from (R)-(-)-linalool. Comparative investigations with racemic linalool suggest that predominantly (2S)-configured derivatives can be expected by using (S)-(+)-configured substrate. Substrate and product inhibited growth even at low concentrations (200 mg l⁻¹). To avoid toxic effects and supply sufficient substrates, a substrate feeding product removal (SFPR) system based on hydrophobic adsorbers was established. Applying SFPR, productivity on the shake flask scale was increased from 80 to 490 mg l⁻¹ day⁻¹. Process optimisation increased productivity to 920 mg l⁻¹ day⁻¹ in a bioreactor with an overall product concentration of 4.600 mg l⁻¹ linalool oxides.


Asunto(s)
Ascomicetos/metabolismo , Reactores Biológicos , Monoterpenos/metabolismo , Óxidos/metabolismo , Monoterpenos Acíclicos , Biocatálisis , Biotransformación , Aromatizantes/química , Aromatizantes/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Monoterpenos/química , Monoterpenos/toxicidad , Óxidos/química , Óxidos/toxicidad , Estereoisomerismo
4.
J Ind Microbiol Biotechnol ; 39(12): 1771-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22911237

RESUMEN

A biotechnological process concept for generation and in situ separation of natural ß-ionone from ß-carotene is presented. The process employs carotenoid cleavage dioxygenases (CCDs), a plant-derived iron-containing nonheme enzyme family requiring only dissolved oxygen as cosubstrate and no additional cofactors. Organophilic pervaporation was found to be very well suited for continuous in situ separation of ß-ionone. Its application led to a highly pure product despite the complexity of the reaction solution containing cell homogenates. Among three different pervaporation membrane types tested, a polyoctylmethylsiloxane active layer on a porous polyetherimide support led to the best results. A laboratory-scale demonstration plant was set up, and a highly pure aqueous-ethanolic solution of ß-ionone was produced from ß-carotene. The described process permits generation of high-value flavor and fragrance compounds bearing the desired label "natural" according to US and European food and safety regulations and demonstrates the potential of CCD enzymes for selective oxidative cleavage of carotenoids.


Asunto(s)
Fraccionamiento Químico/métodos , Dioxigenasas/metabolismo , Norisoprenoides/aislamiento & purificación , Norisoprenoides/metabolismo , beta Caroteno/química , beta Caroteno/metabolismo , Aromatizantes/aislamiento & purificación , Aromatizantes/metabolismo , Membranas Artificiales , Oxidación-Reducción , Oxígeno/metabolismo , Perfumes/química , Volatilización
5.
Biotechnol Bioeng ; 92(5): 624-34, 2005 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-16178034

RESUMEN

An integrated bioprocess for the production of the natural rose-like aroma compounds, 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEAc), from L-phenylalanine (L-phe) with yeasts was investigated. The hydrophobicity of the products leads to product inhibition, which can be compensated by in situ product removal (ISPR). An organophilic pervaporation unit, equipped with a polyoctylmethylsiloxane (POMS) membrane, was coupled via a bypass to a bioreactor and proved to be a suitable technique for the in situ removal of high-boiling products from culture broth. With batch cultures of the thermotolerant yeast Kluyveromyces marxianus CBS 600 in a standard medium at 35 degrees C, the use of pervaporation resulted in a double 2-PE concentration (2.2 g/L) and 1.3 g/L 2-PEAc, which only accumulated transiently in low concentrations during cultivation without ISPR. Using a previously optimized medium, the variation of the temperature from 30 degrees C to 40 degrees C caused an increase in the total conversion yield from 63% to 79%, corresponding to total product concentrations of 5.23 and 5.85 g/L, respectively. In the 40 degrees C batch experiment, the volumetric productivity (2-PE + 2-PEAc) during the exponential phase was 5.2 mmol/L h. While for 2-PE, there is still potential for further optimization, the more hydrophobic 2-PEAc was nearly completely removed from the aqueous culture broth (enrichment factor >400), resulting in highly aroma-enriched permeates. Due to the temperature-correlated performance of the pervaporation, the bioconversion was still efficient even at 45 degrees C (conversion yield: 69%). Surprisingly, at 45 degrees C, the molar ratio of the two products inverted and 2-PEAc turned out to be the main product (4.0 g/L), which opens easy control of the reaction's selectivity by external means. Retrofitting the process with interim heating and cooling equipment to use different temperature levels for cultivation and pervaporation resulted in a decreased yield and product concentration caused by multiple stress factors. The medium composition affected the pervaporation efficiency with molasses acting detrimental.


Asunto(s)
Acetatos/metabolismo , Técnicas de Cultivo de Célula/métodos , Fraccionamiento Químico/métodos , Kluyveromyces/metabolismo , Fenilalanina/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/aislamiento & purificación , Alcohol Feniletílico/metabolismo , Catálisis , Interacciones Hidrofóbicas e Hidrofílicas , Integración de Sistemas , Temperatura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda