Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Br J Cancer ; 129(6): 1022-1031, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507543

RESUMEN

BACKGROUND: The phase II neo-adjuvant clinical trial ICORG10-05 (NCT01485926) compared chemotherapy in combination with trastuzumab, lapatinib or both in patients with HER2+ breast cancer. We studied circulating immune cells looking for alterations in phenotype, genotype and cytotoxic capacity (direct and antibody-dependent cell-mediated cytotoxicity (ADCC)) in the context of treatment response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from pre- (n = 41) and post- (n = 25) neo-adjuvant treatment blood samples. Direct/trastuzumab-ADCC cytotoxicity of patient-derived PBMCs against K562/SKBR3 cell lines was determined ex vivo. Pembrolizumab was interrogated in 21 pre-treatment PBMC ADCC assays. Thirty-nine pre-treatment and 21 post-treatment PBMC samples were immunophenotyped. Fc receptor genotype, tumour infiltrating lymphocyte (TIL) levels and oestrogen receptor (ER) status were quantified. RESULTS: Treatment attenuated the cytotoxicity/ADCC of PBMCs. CD3+/CD4+/CD8+ T cells increased following therapy, while CD56+ NK cells/CD14+ monocytes/CD19+ B cells decreased with significant post-treatment immune cell changes confined to patients with residual disease. Pembrolizumab-augmented ex vivo PBMC ADCC activity was associated with residual disease, but not pathological complete response. Pembrolizumab-responsive PBMCs were associated with lower baseline TIL levels and ER+ tumours. CONCLUSIONS: PBMCs display altered phenotype and function following completion of neo-adjuvant treatment. Anti-PD-1-responsive PBMCs in ex vivo ADCC assays may be a biomarker of treatment response.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Leucocitos Mononucleares/metabolismo , Terapia Neoadyuvante , Neoplasias/tratamiento farmacológico , Fenotipo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología
2.
Invest New Drugs ; 39(2): 587-594, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33052557

RESUMEN

Background The MYC oncogene is one of the most frequently altered driver genes in cancer. MYC is thus a potential target for cancer treatment as well as a biomarker for the disease. However, as a target for treatment, MYC has traditionally been regarded as "undruggable" or difficult to target. We set out to evaluate the efficacy of a novel MYC inhibitor known as MYCMI-6, which acts by preventing MYC from interacting with its cognate partner MAX. Methods MYCMI-6 response was assessed in a panel of breast cancer cell lines using MTT assays and flow cytometry. MYC gene amplification, mRNA and protein expression was analysed using the TCGA and METABRIC databases. Results MYCMI-6 inhibited cell growth in breast cancer cell lines with IC50 values varying form 0.3 µM to >10 µM. Consistent with its ability to decrease cell growth, MYCMI-6 was found to induce apoptosis in two cell lines in which growth was inhibited but not in two cell lines that were resistant to growth inhibition. Across all breast cancers, MYC was found to be amplified in 15.3% of cases in the TCGA database and 26% in the METABRIC database. Following classification of the breast cancers by their molecular subtypes, MYC was most frequently amplified and exhibited highest expression at both mRNA and protein level in the basal subtype. Conclusions Based on these findings, we conclude that for patients with breast cancer, anti-MYC therapy is likely to be most efficacious in patients with the basal subtype.


Asunto(s)
Acridinas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Genes myc/efectos de los fármacos , Piridinas/farmacología , Biomarcadores de Tumor , Ciclo Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Peso Molecular , ARN Mensajero
3.
Invest New Drugs ; 38(5): 1365-1372, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32318883

RESUMEN

Introduction Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer that carries a poorer prognosis. There remains a need to identify novel drivers of TNBC, which may represent targets to treat the disease. c-Met overexpression is linked with decreased survival and is associated with the basal subtype of breast cancer. Cpd A, a kinase inhibitor selective/specific for Met kinase has demonstrated preclinical anti-cancer efficacy in TNBC. We aimed to assess the anti-cancer efficacy of Cpd A when combined with Src kinase, ErbB-family or hepatocyte growth factor (HGF) inhibitors in TNBC cell lines. Methods We determined the anti-proliferative effects of Cpd A, rilotumumab, neratinib and saracatinib tested alone and in combination in a panel of TNBC cells by acid phosphatase assays. We performed reverse phase protein array analysis of c-Met and IGF1Rß expression and phosphorylation of c-Met (Y1234/1235) in TNBC cells and correlated their expression/phosphorylation with Cpd A sensitivity. We examined the impact of Cpd A, neratinib and saracatinib tested alone and in combination on invasive potential and colony formation.Results TNBC cells are not inherently sensitive to Cpd A, and neither c-Met expression nor phosphorylation are biomarkers of sensitivity to Cpd A. Cpd A enhanced the anti-proliferative effects of neratinib in vitro; however, this effect was limited to cell lines with innate sensitivity to Cpd A. Cpd A had limited anti-invasive effects but it reduced colony formation in the TNBC cell line panel.Conclusions Despite Cpd A having a potential role in reducing cancer cell metastasis, identification of strong predictive biomarkers of c-Met sensitivity would be essential to the development of a c-Met targeted treatment for an appropriately selected cohort of TNBC patients.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fosfatasa Ácida/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Proteínas Proto-Oncogénicas c-met/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
4.
Invest New Drugs ; 36(4): 581-589, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29396630

RESUMEN

As HER2 is a client protein of the molecular chaperone Hsp90, targeting Hsp90 may be beneficial in HER2-positive breast cancer. In this study, the activity of the Hsp90 inhibitor NVP-AUY922 was assessed in HER2 overexpressing breast cancer cell lines, including two cell line models of acquired trastuzumab-resistance. The seven HER2-positive breast cancer cell lines tested showed significant sensitivity to NVP-AUY922 in vitro, with IC50 values between 6 and 17 nM. Combining NVP-AUY922 with chemotherapy did not improve response. NVP-AUY922 in combination with trastuzumab, significantly enhanced growth inhibition in three of the seven cell lines tested. In conclusion, our data shows that NVP-AUY922 displays potent anti-cancer activity in HER2-positive and trastuzumab-resistant breast cancer cells, and supports further testing of NVP-AUY922 in patients with HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Receptor ErbB-2/genética , Resorcinoles/farmacología , Trastuzumab/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos
5.
BMC Cancer ; 18(1): 965, 2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30305055

RESUMEN

BACKGROUND: Lapatinib has clinical efficacy in the treatment of trastuzumab-refractory HER2-positive breast cancer. However, a significant proportion of patients develop progressive disease due to acquired resistance to the drug. Induction of apoptotic cell death is a key mechanism of action of lapatinib in HER2-positive breast cancer cells. METHODS: We examined alterations in regulation of the intrinsic and extrinsic apoptosis pathways in cell line models of acquired lapatinib resistance both in vitro and in patient samples from the NCT01485926 clinical trial, and investigated potential strategies to exploit alterations in apoptosis signalling to overcome lapatinib resistance in HER2-positive breast cancer. RESULTS: In this study, we examined two cell lines models of acquired lapatinib resistance (SKBR3-L and HCC1954-L) and showed that lapatinib does not induce apoptosis in these cells. We identified alterations in members of the BCL-2 family of proteins, in particular MCL-1 and BAX, which may play a role in resistance to lapatinib. We tested the therapeutic inhibitor obatoclax, which targets MCL-1. Both SKBR3-L and HCC1954-L cells showed greater sensitivity to obatoclax-induced apoptosis than parental cells. Interestingly, we also found that the development of acquired resistance to lapatinib resulted in acquired sensitivity to TRAIL in SKBR3-L cells. Sensitivity to TRAIL in the SKBR3-L cells was associated with reduced phosphorylation of AKT, increased expression of FOXO3a and decreased expression of c-FLIP. In SKBR3-L cells, TRAIL treatment caused activation of caspase 8, caspase 9 and caspase 3/7. In a second resistant model, HCC1954-L cells, p-AKT levels were not decreased and these cells did not show enhanced sensitivity to TRAIL. Furthermore, combining obatoclax with TRAIL improved response in SKBR3-L cells but not in HCC1954-L cells. CONCLUSIONS: Our findings highlight the possibility of targeting altered apoptotic signalling to overcome acquired lapatinib resistance, and identify potential novel treatment strategies, with potential biomarkers, for HER2-positive breast cancer that is resistant to HER2 targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Lapatinib/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Proteína Forkhead Box O3/biosíntesis , Expresión Génica/efectos de los fármacos , Genes erbB-2 , Humanos , Lapatinib/uso terapéutico , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico
6.
Cancers (Basel) ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893110

RESUMEN

Advancements in oncology, especially with the era of precision oncology, is resulting in a paradigm shift in cancer care. Indeed, innovative technologies, such as artificial intelligence, are paving the way towards enhanced diagnosis, prevention, and personalised treatments as well as novel drug discoveries. Despite excellent progress, the emergence of resistant cancers has curtailed both the pace and extent to which we can advance. By combining both their understanding of the fundamental biological mechanisms and technological advancements such as artificial intelligence and data science, cancer researchers are now beginning to address this. Together, this will revolutionise cancer care, by enhancing molecular interventions that may aid cancer prevention, inform clinical decision making, and accelerate the development of novel therapeutic drugs. Here, we will discuss the advances and approaches in both artificial intelligence and precision oncology, presented at the 59th Irish Association for Cancer Research annual conference.

7.
PLoS One ; 18(3): e0282512, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920947

RESUMEN

Triple Negative Breast Cancer (TNBC), a subtype of breast cancer, has fewer successful therapeutic therapies than other types of breast cancer. Insulin-like growth factor receptor 1 (IGF1R) and the Insulin receptor (IR) are associated with poor outcomes in TNBC. Targeting IGF1R has failed clinically. We aimed to test if inhibiting both IR/IGF1R was a rationale therapeutic approach to treat TNBC. We showed that despite IGF1R and IR being expressed in TNBC, their expression is not associated with a negative survival outcome. Furthermore, targeting both IR/IGF1R with inhibitors in multiple TNBC cell lines did not inhibit cell growth. Linsitinib, a small molecule inhibitor of both IGF1R and IR, did not block tumour formation and had no effect on tumour growth in vivo. Cumulatively these data suggest that while IGF1R and IR are expressed in TNBC, they are not good therapeutic targets. A potential reason for the limited anti-cancer impact when IR/IGF1R was targeted may be because multiple signalling pathways are altered in TNBC. Therefore, targeting individual signalling pathways may not be sufficient to inhibit cancer growth.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina , Línea Celular Tumoral , Receptores de Somatomedina/metabolismo , Proliferación Celular
8.
NPJ Breast Cancer ; 9(1): 72, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758711

RESUMEN

HER2-positive (HER2+) breast cancer accounts for 20-25% of all breast cancers. Predictive biomarkers of neoadjuvant therapy response are needed to better identify patients with early stage disease who may benefit from tailored treatments in the adjuvant setting. As part of the TCHL phase-II clinical trial (ICORG10-05/NCT01485926) whole exome DNA sequencing was carried out on normal-tumour pairs collected from 22 patients. Here we report predictive modelling of neoadjuvant therapy response using clinicopathological and genomic features of pre-treatment tumour biopsies identified age, estrogen receptor (ER) status and level of immune cell infiltration may together be important for predicting response. Clonal evolution analysis of longitudinally collected tumour samples show subclonal diversity and dynamics are evident with potential therapy resistant subclones detected. The sources of greater pre-treatment immunogenicity associated with a pathological complete response is largely unexplored in HER2+ tumours. However, here we point to the possibility of APOBEC associated mutagenesis, specifically in the ER-neg/HER2+ subtype as a potential mediator of this immunogenic phenotype.

9.
Breast Cancer Res Treat ; 136(3): 717-27, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23117852

RESUMEN

Insulin-like growth factor-1 receptor (IGF1R) signalling is implicated in resistance to trastuzumab. However, the benefit of co-targeting HER2 and IGF1R has not been extensively studied, and the relationship between activated IGF1R and clinical response to trastuzumab has not been reported. This study aimed to evaluate the combination of trastuzumab with IGF1R tyrosine kinase inhibitors (TKIs) in a panel of HER2-positive breast cancer cell lines, and to examine the relationship between IGF1R expression and activation and response to trastuzumab in HER2-positive breast cancer patients. The anti-proliferative effects of trastuzumab combined with IGF1R TKIs BMS-536924 or NVP-AEW541 were measured in nine HER2-positive cell lines. IGF1R and phosphorylated IGF1R/insulin receptor (pIGF1R/IR) were measured by immunohistochemistry in 160 tumour samples from trastuzumab-treated patients (ICORG 06-22). The HER2-positive cell lines displayed varying sensitivity to IGF1R TKIs alone (IC(50)s: 0.7 to >10 µM). However, when combined with trastuzumab, a significantly enhanced effect was observed in five cell lines treated with BMS-536924, and three with NVP-AEW541. While IGF1R levels correlated with reduced response to NVP-AEW541 alone, neither IGF1R nor pIGF1R were predictive of response to BMS-536924 or NVP-AEW541 in combination with trastuzumab. Low HER2 levels correlated with response to BMS-536924 in combination with trastuzumab. Akt levels correlated with improved response to trastuzumab and NVP-AEW541 (P = 0.039). Cytoplasmic IGF1R staining was observed in all tumours, membrane IGF1R was detected in 13.8 %, and pIGF1R/IR was detected in 48.8 %. Although membrane IGF1R staining was associated with larger tumour size (P = 0.041), and lower tumour grade (P = 0.024), no association between IGF1R or pIGF1R/IR and patient survival was observed. In conclusion, while neither IGF1R expression nor activation was predictive of response to trastuzumab, these pre-clinical data provide evidence that co-targeting HER2 and IGF1R may be beneficial in some HER2-amplified breast cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Terapia Molecular Dirigida , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1/metabolismo , Factores de Edad , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/farmacología , Bencimidazoles/administración & dosificación , Bencimidazoles/farmacología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Citoplasma/metabolismo , Femenino , Humanos , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/administración & dosificación , Piridonas/farmacología , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Pirroles/administración & dosificación , Pirroles/farmacología , Receptor IGF Tipo 1/análisis , Receptor IGF Tipo 1/antagonistas & inhibidores , Trastuzumab , Resultado del Tratamiento
10.
Cancer Drug Resist ; 5(3): 560-576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176752

RESUMEN

Triple-negative breast cancer (TNBC) is characterized as an aggressive form of breast cancer (BC) associated with poor patient outcomes. For the majority of patients, there is a lack of approved targeted therapies. Therefore, chemotherapy remains a key treatment option for these patients, but significant issues around acquired resistance limit its efficacy. Thus, TNBC has an unmet need for new targeted personalized medicine approaches. Calcium (Ca2+) is a ubiquitous second messenger that is known to control a range of key cellular processes by mediating signalling transduction and gene transcription. Changes in Ca2+ through altered calcium channel expression or activity are known to promote tumorigenesis and treatment resistance in a range of cancers including BC. Emerging evidence shows that this is mediated by Ca2+ modulation, supporting the function of tumour suppressor genes (TSGs) and oncogenes. This review provides insight into the underlying alterations in calcium signalling and how it plays a key role in promoting disease progression and therapy resistance in TNBC which harbours mutations in tumour protein p53 (TP53) and the PI3K/AKT pathway.

11.
Cancers (Basel) ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36551698

RESUMEN

Innovation in both detection and treatment of cancer is necessary for the constant improvement in therapeutic strategies, especially in patients with novel or resistant variants of cancer. Cancer mortality rates have declined by almost 30% since 1991, however, depending on the cancer type, acquired resistance can occur to varying degrees. To combat this, researchers are looking towards advancing our understanding of cancer biology, in order to inform early detection, and guide novel therapeutic approaches. Through combination of these approaches, it is believed that a more complete and thorough intervention on cancer can be achieved. Here, we will discuss the advances and approaches in both detection and treatment of cancer, presented at the 58th Irish Association for Cancer Research (IACR) annual conference.

12.
J Pers Med ; 12(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36013226

RESUMEN

Triple negative breast cancer (TNBC) remains a therapeutic challenge due to the lack of targetable genetic alterations and the frequent development of resistance to the standard cisplatin-based chemotherapies. Here, we have taken a systems biology approach to investigate kinase signal transduction networks that are involved in TNBC resistance to cisplatin. Treating a panel of cisplatin-sensitive and cisplatin-resistant TNBC cell lines with a panel of kinase inhibitors allowed us to reconstruct two kinase signalling networks that characterise sensitive and resistant cells. The analysis of these networks suggested that the activation of the PI3K/AKT signalling pathway is critical for cisplatin resistance. Experimental validation of the computational model predictions confirmed that TNBC cell lines with activated PI3K/AKT signalling are sensitive to combinations of cisplatin and PI3K/AKT pathway inhibitors. Thus, our results reveal a new therapeutic approach that is based on identifying targeted therapies that synergise with conventional chemotherapies.

13.
Clin Cancer Res ; 27(3): 807-818, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33122343

RESUMEN

PURPOSE: Antibody-dependent cell-mediated cytotoxicity (ADCC) is one mechanism of action of the monoclonal antibody (mAb) therapies trastuzumab and pertuzumab. Tyrosine kinase inhibitors (TKIs), like lapatinib, may have added therapeutic value in combination with mAbs through enhanced ADCC activity. Using clinical data, we examined the impact of lapatinib on HER2/EGFR expression levels and natural killer (NK) cell gene signatures. We investigated the ability of three TKIs (lapatinib, afatinib, and neratinib) to alter HER2/immune-related protein levels in preclinical models of HER2-positive (HER2+) and HER2-low breast cancer, and the subsequent effects on trastuzumab/pertuzumab-mediated ADCC. EXPERIMENTAL DESIGN: Preclinical studies (proliferation assays, Western blotting, high content analysis, and flow cytometry) employed HER2+ (SKBR3 and HCC1954) and HER2-low (MCF-7, T47D, CAMA-1, and CAL-51) breast cancer cell lines. NCT00524303 provided reverse phase protein array-determined protein levels of HER2/pHER2/EGFR/pEGFR. RNA-based NK cell gene signatures (CIBERSORT/MCP-counter) post-neoadjuvant anti-HER2 therapy were assessed (NCT00769470/NCT01485926). ADCC assays utilized flow cytometry-based protocols. RESULTS: Lapatinib significantly increased membrane HER2 levels, while afatinib and neratinib significantly decreased levels in all preclinical models. Single-agent lapatinib increased HER2 or EGFR levels in 10 of 11 (91%) tumor samples. NK cell signatures increased posttherapy (P = 0.03) and associated with trastuzumab response (P = 0.01). TKI treatment altered mAb-induced NK cell-mediated ADCC in vitro, but it did not consistently correlate with HER2 expression in HER2+ or HER2-low models. The ADCC response to trastuzumab and pertuzumab combined did not exceed either mAb alone. CONCLUSIONS: TKIs differentially alter tumor cell phenotype which can impact NK cell-mediated response to coadministered antibody therapies. mAb-induced ADCC response is relevant when rationalizing combinations for clinical investigation.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/terapia , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Lapatinib/farmacología , Lapatinib/uso terapéutico , Células MCF-7 , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Inhibidores de Proteínas Quinasas/uso terapéutico , RNA-Seq , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Adulto Joven
14.
Oncogene ; 39(14): 3028-3040, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042115

RESUMEN

The proviral integration of Moloney virus (PIM) family of protein kinases are overexpressed in many haematological and solid tumours. PIM kinase expression is elevated in PI3K inhibitor-treated breast cancer samples, suggesting a major resistance pathway for PI3K inhibitors in breast cancer, potentially limiting their clinical utility. IBL-302 is a novel molecule that inhibits both PIM and PI3K/AKT/mTOR signalling. We thus evaluated the preclinical activity of IBL-302, in a range of breast cancer models. Our results demonstrate in vitro efficacy of IBL-302 in a range of breast cancer cell lines, including lines with acquired resistance to trastuzumab and lapatinib. IBL-302 demonstrated single-agent, anti-tumour efficacy in suppression of pAKT, pmTOR and pBAD in the SKBR-3, BT-474 and HCC-1954 HER2+/PIK3CA-mutated cell lines. We have also shown the in vivo single-agent efficacy of IBL-302 in the subcutaneous BT-474 and HCC-1954 xenograft model in BALB/c nude mice. The combination of trastuzumab and IBL-302 significantly increased the anti-proliferative effect in HER2+ breast cancer cell line, and matched trastuzumab-resistant line, relative to testing either drug alone. We thus believe that the novel PIM and PI3K/mTOR inhibitor, IBL-302, represents an exciting new potential treatment option for breast cancer, and that it should be considered for clinical investigation.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Tiofenos/farmacología , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Lapatinib/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trastuzumab/farmacología
15.
Ther Adv Med Oncol ; 12: 1758835919897546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32064003

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Epidermal growth factor receptor (EGFR) has been shown to be over-expressed in TNBC and represents a rational treatment target. METHODS: We examined single agent and combination effects for afatinib and dasatinib in TNBC. We then determined IC50 and combination index values using Calcusyn. Functional analysis of single and combination treatments was performed using reverse phase protein array and cell cycle analysis. Finally, we determined the anticancer effects of the combination in vivo. RESULTS: A total of 14 TNBC cell lines responded to afatinib with IC50 values ranging from 0.008 to 5.0 µM. Three cell lines, belonging to the basal-like subtype of TNBC, were sensitive to afatinib. The addition of afatinib enhanced response to the five other targeted therapies in HCC1937 and HDQP1 cells. The combination of afatinib with dasatinib caused the greatest growth inhibition in both cell lines. The afatinib/dasatinib combination was synergistic and/or additive in 13/14 TNBC cell lines. Combined afatinib/dasatinib treatment induced G1 cell cycle arrest. Reverse phase protein array results showed the afatinib/dasatinib combination resulted in efficient inhibition of both pERK(T202/T204) and pAkt(S473) signalling in BT20 cells, which was associated with the greatest antiproliferative effects. High baseline levels of pSrc(Y416) and pMAPK(p38) correlated with sensitivity to afatinib, whereas low levels of B-cell lymphoma 2 (Bcl2) and mammalian target of rapamycin (mTOR) correlated with synergistic growth inhibition by combined afatinib and dasatinib treatment. In vivo, the combination treatment inhibited tumour growth in a HCC1806 xenograft model. CONCLUSIONS: We demonstrate that afatinib combined with dasatinib has potential clinical activity in TNBC but warrants further preclinical investigation.

16.
Cancers (Basel) ; 11(4)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999598

RESUMEN

In pre-clinical studies, triple-negative breast cancer (TNBC) cells have demonstrated sensitivity to the multi-targeted kinase inhibitor dasatinib; however, clinical trials with single-agent dasatinib showed limited efficacy in unselected populations of breast cancer, including TNBC. To study potential mechanisms of resistance to dasatinib in TNBC, we established a cell line model of acquired dasatinib resistance (231-DasB). Following an approximately three-month exposure to incrementally increasing concentrations of dasatinib (200 nM to 500 nM) dasatinib, 231-DasB cells were resistant to the agent with a dasatinib IC50 value greater than 5 µM compared to 0.04 ± 0.001 µM in the parental MDA-MB-231 cells. 231-DasB cells also showed resistance (2.2-fold) to the Src kinase inhibitor PD180970. Treatment of 231-DasB cells with dasatinib did not inhibit phosphorylation of Src kinase. The 231-DasB cells also had significantly increased levels of p-Met compared to the parental MDA-MB-231 cells, as measured by luminex, and resistant cells demonstrated a significant increase in sensitivity to the c-Met inhibitor, CpdA, with an IC50 value of 1.4 ± 0.5 µM compared to an IC50 of 6.8 ± 0.2 µM in the parental MDA-MB-231 cells. Treatment with CpdA decreased p-Met and p-Src in both 231-DasB and MDA-MB-231 cells. Combined treatment with dasatinib and CpdA significantly inhibited the growth of MDA-MB-231 parental cells and prevented the emergence of dasatinib resistance. If these in vitro findings can be extrapolated to human cancer treatment, combined treatment with dasatinib and a c-Met inhibitor may block the development of acquired resistance and improve response rates to dasatinib treatment in TNBC.

17.
J Transl Med ; 6: 53, 2008 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-18823558

RESUMEN

BACKGROUND: Metastatic melanoma is a highly chemotherapy resistant tumour. The use of newer targeted therapies alone and in combination with chemotherapy may offer new hope of improving response to treatment. Dasatinib, a multi-target kinase inhibitor, is currently approved for the treatment of chronic myeloid leukaemia and has shown promising results in preclinical studies in a number of solid tumours. METHODS: We examined the effects of dasatinib on proliferation, chemo-sensitivity, cell cycle arrest, apoptosis, migration and invasion in human melanoma cell lines. Expression and activation of Src kinase, FAK and EphA2 were also examined in the melanoma cells. RESULTS: Dasatinib inhibited growth of three of the five melanoma cell lines. Comparison with sorafenib showed that in these three cell lines dasatinib inhibited growth at lower concentrations than sorafenib. Dasatinib in combination with the chemotherapy drug temozolomide showed greater efficacy than either drug alone. Dasatinib induced cell cycle arrest and apoptosis and significantly inhibited cell migration and invasion of melanoma cells. Dasatinib inhibition of proliferation was associated with reduced phosphorylation of Src kinase, while decreased phosphorylation of FAK was implicated in dasatinib-mediated inhibition of migration and invasion in melanoma cells. CONCLUSION: Dasatinib has both anti-proliferative and anti-invasive effects in melanoma cells and combined with chemotherapy may have clinical benefit in the treatment of malignant melanoma.


Asunto(s)
Melanoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Pirimidinas/farmacología , Tiazoles/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bencenosulfonatos/farmacología , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Dasatinib , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Humanos , Invasividad Neoplásica , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Piridinas/farmacología , Receptor EphA2/antagonistas & inhibidores , Sorafenib , Temozolomida
18.
BMC Cancer ; 8: 9, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18199328

RESUMEN

BACKGROUND: A number of recent studies have suggested that cancer incidence rates may be lower in patients receiving statin treatment for hypercholesterolemia. We examined the effects of statin drugs on in vitro proliferation, migration and invasion of melanoma cells. METHODS: The ability of lovastatin, mevastatin and simvastatin to inhibit the melanoma cell proliferation was examined using cytotoxicity and apoptosis assays. Effects on cell migration and invasion were assessed using transwell invasion and migration chambers. Hypothesis testing was performed using 1-way ANOVA, and Student's t-test. RESULTS: Lovastatin, mevastatin and simvastatin inhibited the growth, cell migration and invasion of HT144, M14 and SK-MEL-28 melanoma cells. The concentrations required to inhibit proliferation of melanoma cells (0.8-2.1 microave previously been achieved in a phase I clinical trial of lovastatin in patients with solid tumours, (45 mg/kg/day resulted in peak plasma concentrations of approximately 3.9 micro CONCLUSION: Our results suggest that statin treatment is unlikely to prevent melanoma development at standard doses. However, higher doses of statins may have a role to play in adjuvant therapy by inhibiting growth and invasion of melanoma cells.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Técnicas In Vitro , Lovastatina/análogos & derivados , Lovastatina/farmacología , Lovastatina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Melanoma/patología , Invasividad Neoplásica , Simvastatina/farmacología , Simvastatina/uso terapéutico , Neoplasias Cutáneas/patología
19.
Ther Adv Med Oncol ; 10: 1758834017746040, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29383036

RESUMEN

Background: The application of genomic technologies to patient tumor samples identified groups of signaling pathways which acquire activating mutations. Some cancers are dependent on these mutations and the aberrant proteins resulting from these mutations can be targeted by novel drugs which can eradicate the cancer. Methods: We used www.cbioportal.org to determine the frequency of ERBB mutations in solid tumors. We then determined the sensitivity of a panel of cell lines to clinically available PI3K inhibitors. Using proliferation and apoptosis assays as well as functional interrogation with reverse phase protein arrays we demonstrated the impact of targeting ERBB-mutant cancers with the combination of a PI3K inhibitor and the pan-HER family inhibitor afatinib. Results: In over 14,000 patients we found that 12% of their tumors have an ERBB family gene mutation (EGFR, ERBB2, ERBB3 and ERBB4). In cancers not commonly associated with HER family protein overexpression, such as ovarian, endometrial, melanoma and head and neck cancers (n = 2116), we found that ERBB family mutations are enriched, occurring at rates from 14% to 34% and commonly co-occur with PIK3CA mutations. Importantly, we demonstrate that ERBB family mutant cancers are sensitive to treatment with PI3K inhibitors. Finally we show that the combination of afatinib and copanlisib represents a novel therapeutic strategy for patients whose cancers harbor both ERBB family and PIK3CA mutation. Conclusions: We demonstrate that ERBB family mutations are common in cancers not associated with overexpression or amplification of HER family proteins. These ERBB family mutant cancers are sensitive to treatment with PI3K inhibitors, and when combined with pan-HER inhibitors have synergistic antiproliferative effects.

20.
Oncotarget ; 8(49): 85120-85135, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29156708

RESUMEN

PURPOSE: The MEK/MAPK pathway is commonly activated in HER2-positive breast cancer, but little investigation of targeting this pathway has been undertaken. Here we present the results of an in vitro preclinical evaluation of refametinib, an allosteric MEK1/2 inhibitor, in HER2-positive breast cancer cell lines including models of acquired resistance to trastuzumab or lapatinib. METHODS: A panel of HER2-positive breast cancer cells were profiled for mutational status and also for anti-proliferative response to refametinib alone and in combination with the PI3K inhibitor (PI3Ki) copanlisib and the HER2-targeted therapies trastuzumab and lapatinib. Reverse phase protein array (RPPA) was used to determine the effect of refametinib alone and in combination with PI3Ki and HER2-inhibitors on expression and phosphorylation of proteins in the PI3K/AKT and MEK/MAPK pathways. We validated our proteomic in vitro findings by utilising RPPA analysis of patients who received either trastuzumab, lapatinib or the combination of both drugs in the NCT00524303/LPT109096 clinical trial. RESULTS: Refametinib has anti-proliferative effects when used alone in 2/3 parental HER2-positive breast cancer cell lines (HCC1954, BT474), along with 3 models of these 2 cell lines with acquired trastuzumab or lapatinib resistance (6 cell lines tested). Refametinib treatment led to complete inhibition of MAPK signalling. In HCC1954, the most refametinib-sensitive cell line (IC50= 397 nM), lapatinib treatment inhibits phosphorylation of MEK and MAPK but activates AKT phosphorylation, in contrast to the other 2 parental cell lines tested (BT474-P, SKBR3-P), suggesting that HER2 may directly activate MEK/MAPK and not PI3K/AKT in HCC1954 cells but not in the other 2 cell lines, perhaps explaining the refametinib-sensitivity of this cell line. Using RPPA data from patients who received either trastuzumab, lapatinib or the combination of both drugs together with chemotherapy in the NCT00524303 clinical trial, we found that 18% (n=38) of tumours had decreased MAPK and increased AKT phosphorylation 14 days after treatment with HER2-targeted therapies. The combination of MEK inhibition (MEKi) with refametinib and copanlisib led to synergistic inhibition of growth in 4/6 cell lines tested (CI @ED75 = 0.39-0.75), whilst the combinations of lapatinib and refametinib led to synergistic inhibition of growth in 3/6 cell lines (CI @ED75 = 0.39-0.80). CONCLUSION: Refametinib alone or in combination with copanlisib or lapatinib could represent an improved treatment strategy for some patients with HER2-positive breast cancer, and should be considered for clinical trial evaluation. The direct down-regulation of MEK/MAPK but not AKT signalling by HER2 inhibition (e.g. by lapatinib or trastuzumab), which we demonstrate occurs in 18% of HER2-positive breast cancers may serve as a potential biomarker of responsiveness to the MEK inhibitor refametinib.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda