Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Annu Rev Immunol ; 29: 185-214, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21219183

RESUMEN

Receptors of the innate immune system recognize conserved microbial features and provide key signals that initiate immune responses. Multiple transmembrane and cytosolic receptors have evolved to recognize RNA and DNA, including members of the Toll-like receptor and RIG-I-like receptor families and several DNA sensors. This strategy enables recognition of a broad range of pathogens; however, in some cases, this benefit is weighed against the cost of potential self recognition. Recognition of self nucleic acids by the innate immune system contributes to the pathology associated with several autoimmune or autoinflammatory diseases. In this review, we highlight our current understanding of nucleic acid sensing by innate immune receptors and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.


Asunto(s)
ADN/química , Infecciones/inmunología , ARN/química , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Animales , Citosol/química , Retículo Endoplásmico/metabolismo , Humanos , Inmunidad Innata , Lisosomas/metabolismo , Receptores Toll-Like/inmunología
2.
J Mol Cell Cardiol ; 186: 1-15, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951204

RESUMEN

Myocardial infarction (MI) results from occlusion of blood supply to the heart muscle causing death of cardiac muscle cells. Following myocardial infarction (MI), extracellular matrix deposition and scar formation mechanically stabilize the injured heart as damaged myocytes undergo necrosis and removal. Fibroblasts and macrophages are key drivers of post-MI scar formation, maturation, and ongoing long-term remodelling; however, their individual contributions are difficult to assess from bulk analyses of infarct scar. Here, we employ state-of-the-art automated spatially targeted optical micro proteomics (autoSTOMP) to photochemically tag and isolate proteomes associated with subpopulations of fibroblasts (SMA+) and macrophages (CD68+) in the context of the native, MI tissue environment. Over a time course of 6-weeks post-MI, we captured dynamic changes in the whole-infarct proteome and determined that some of these protein composition signatures were differentially localized near SMA+ fibroblasts or CD68+ macrophages within the scar region. These results link specific cell populations to within-infarct protein remodelling and illustrate the distinct metabolic and structural processes underlying the observed physiology of each cell type.


Asunto(s)
Cicatriz , Infarto del Miocardio , Ratas , Animales , Cicatriz/metabolismo , Proteómica , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Macrófagos/metabolismo , Remodelación Ventricular
3.
Infect Immun ; 91(7): e0044222, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37255461

RESUMEN

The biology of a cell, whether it is a unicellular organism or part of a multicellular network, is influenced by cell type, temporal changes in cell state, and the cell's environment. Spatial cues play a critical role in the regulation of microbial pathogenesis strategies. Information about where the pathogen is-in a tissue or in proximity to a host cell-regulates gene expression and the compartmentalization of gene products in the microbe and the host. Our understanding of host and pathogen identity has bloomed with the accessibility of transcriptomics and proteomics techniques. A missing piece of the puzzle has been our ability to evaluate global transcript and protein expression in the context of the subcellular niche, primary cell, or native tissue environment during infection. This barrier is now lower with the advent of new spatial omics techniques to understand how location regulates cellular functions. This review will discuss how recent advances in spatial proteomics and transcriptomics approaches can address outstanding questions in microbial pathogenesis.


Asunto(s)
Interacciones Huésped-Patógeno , Proteómica , Interacciones Huésped-Patógeno/genética , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Procesamiento Proteico-Postraduccional
4.
Allergy ; 78(12): 3193-3203, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37497566

RESUMEN

BACKGROUND: Recent studies have shown deposition of immunoglobulin G4 (IgG4) and food proteins in the esophageal mucosa of eosinophilic esophagitis (EoE) patients. Our aims were to assess whether co-localization of IgG4 and major cow's milk proteins (CMPs) was associated with EoE disease activity and to investigate the proteins enriched in proximity to IgG4 deposits. METHODS: This study included adult subjects with EoE (n = 13) and non-EoE controls (n = 5). Esophageal biopsies were immunofluorescence stained for IgG4 and CMPs. Co-localization in paired samples from active disease and remission was assessed and compared to controls. The proteome surrounding IgG4 deposits was evaluated by the novel technique, AutoSTOMP. IgG4-food protein interactions were confirmed with co-immunoprecipitation and mass spectrometry. RESULTS: IgG4-CMP co-localization was higher in the active EoE group compared to paired remission samples (Bos d 4, p = .02; Bos d 5, p = .002; Bos d 8, p = .002). Co-localization was also significantly higher in the active EoE group compared to non-EoE controls (Bos d 4, p = .0013; Bos d 5, p = .0007; Bos d 8, p = .0013). AutoSTOMP identified eosinophil-derived proteins (PRG 2 and 3, EPX, RNASE3) and calpain-14 in IgG4-enriched areas. Co-immunoprecipitation and mass spectrometry confirmed IgG4 binding to multiple food allergens. CONCLUSION: These findings further contribute to the understanding of the interaction of IgG4 with food antigens as it relates to EoE disease activity. These data strongly suggest the immune complex formation of IgG4 and major cow's milk proteins. These immune complexes may have a potential role in the pathophysiology of EoE by contributing to eosinophil activation and disease progression.


Asunto(s)
Esofagitis Eosinofílica , Adulto , Femenino , Animales , Bovinos , Humanos , Esofagitis Eosinofílica/patología , Complejo Antígeno-Anticuerpo , Inmunoglobulina G , Alérgenos , Proteínas de la Leche
5.
J Immunol ; 204(12): 3329-3338, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32350081

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite that establishes life-long infection in a wide range of hosts, including humans and rodents. To establish a chronic infection, pathogens often exploit the trade-off between resistance mechanisms, which promote inflammation and kill microbes, and tolerance mechanisms, which mitigate inflammatory stress. Signaling through the type I IL-1R has recently been shown to control disease tolerance pathways in endotoxemia and Salmonella infection. However, the role of the IL-1 axis in T. gondii infection is unclear. In this study we show that IL-1R-/- mice can control T. gondii burden throughout infection. Compared with wild-type mice, IL-1R-/- mice have more severe liver and adipose tissue pathology during acute infection, consistent with a role in acute disease tolerance. Surprisingly, IL-1R-/- mice had better long-term survival than wild-type mice during chronic infection. This was due to the ability of IL-1R-/- mice to recover from cachexia, an immune-metabolic disease of muscle wasting that impairs fitness of wild-type mice. Together, our data indicate a role for IL-1R as a regulator of host homeostasis and point to cachexia as a cost of long-term reliance on IL-1-mediated tolerance mechanisms.


Asunto(s)
Caquexia/inmunología , Tolerancia Inmunológica/inmunología , Receptores de Interleucina-1/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Caquexia/parasitología , Inflamación/inmunología , Inflamación/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Toxoplasmosis/parasitología
6.
J Proteome Res ; 20(9): 4543-4552, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34436902

RESUMEN

Tissue microenvironment properties like blood flow, extracellular matrix, or proximity to immune-infiltrate are important regulators of cell biology. However, methods to study regional protein expression in the native tissue environment are limited. To address this need, we developed a novel approach to visualize, purify, and measure proteins in situ using automated spatially targeted optical microproteomics (AutoSTOMP). Here, we report custom codes to specify regions of heterogeneity in a tissue section and UV-biotinylate proteins within those regions. We have developed liquid chromatography-mass spectrometry (LC-MS)/MS-compatible biochemistry to purify those proteins and label-free quantification methodology to determine protein enrichment in target cell types or structures relative to nontarget regions in the same sample. These tools were applied to (a) identify inflammatory proteins expressed by CD68+ macrophages in rat cardiac infarcts and (b) characterize inflammatory proteins enriched in IgG4+ lesions in human esophageal tissues. These data indicate that AutoSTOMP is a flexible approach to determine regional protein expression in situ on a range of primary tissues and clinical biopsies where current tools and sample availability are limited.


Asunto(s)
Proteínas , Proteómica , Animales , Cromatografía Liquida , Espectrometría de Masas , Ratas
7.
Anal Chem ; 92(2): 2005-2010, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31869197

RESUMEN

Spatially targeted optical microproteomics (STOMP) is a method to study region-specific protein complexity in primary cells and tissue samples. STOMP uses a confocal microscope to visualize structures of interest and to tag the proteins within those structures by a photodriven cross-linking reaction so that they can be affinity purified and identified by mass spectrometry (eLife 2015, 4, e09579). However, the use of a custom photo-cross-linker and the requirement for extensive user intervention during sample tagging have posed barriers to the utilization of STOMP. To address these limitations, we built automated STOMP (autoSTOMP) which uses a customizable code in SikuliX to coordinate image capture and cross-linking functions in Zeiss Zen Black with image processing in FIJI. To increase protocol accessibility, we implemented a commercially available biotin-benzophenone photo-cross-linking and purification protocol. Here we demonstrate that autoSTOMP can efficiently label, purify, and identify proteins belonging to 1-2 µm structures in primary human foreskin fibroblasts or mouse bone marrow-derived dendritic cells infected with the protozoan parasite Toxoplasma gondii (Tg). AutoSTOMP can easily be adapted to address a range of research questions using Zeiss Zen Black microscopy systems and LC-MS protocols that are standard in many research cores.


Asunto(s)
Automatización , Proteínas/análisis , Proteómica , Animales , Células Dendríticas/química , Fibroblastos/química , Humanos , Ratones , Estructura Molecular , Imagen Óptica , Conformación Proteica
8.
Immunity ; 35(5): 721-32, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22078797

RESUMEN

Recognition of nucleic acids as a signature of infection by Toll-like receptors (TLRs) 7 and 9 exposes the host to potential self-recognition and autoimmunity. It has been proposed that intracellular compartmentalization is largely responsible for reliable self versus nonself discrimination by these receptors. We have previously shown that TLR9 and TLR7 require processing prior to activation, which may further reinforce receptor compartmentalization and tolerance to self, yet this possibility remains untested. Here we report that residues within the TLR9 transmembrane (TM) region conferred the requirement for ectodomain proteolysis. TLR9 TM mutants responded to extracellular DNA, and mice expressing such receptors died from systemic inflammation and anemia. This inflammatory disease did not require lymphocytes and appeared to require recognition of self-DNA by dendritic cells. To our knowledge, these results provide the first demonstration that TLR-intrinsic mutations can lead to a break in tolerance.


Asunto(s)
Inflamación/genética , Inflamación/inmunología , Mutación , Receptor Toll-Like 9/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Autoinmunidad/genética , Autoinmunidad/inmunología , Linfocitos B/inmunología , Membrana Celular/metabolismo , Células Dendríticas/inmunología , Expresión Génica , Genes Letales , Células HEK293 , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína/genética , Transporte de Proteínas , Proteolisis , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal , Linfocitos T/inmunología , Receptor Toll-Like 9/química , Receptor Toll-Like 9/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
9.
PLoS Biol ; 12(4): e1001845, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24781109

RESUMEN

Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria.


Asunto(s)
Mitocondrias/parasitología , Proteínas Protozoarias/inmunología , Toxoplasma/inmunología , Toxoplasma/patogenicidad , Toxoplasmosis/inmunología , Animales , Animales Modificados Genéticamente , Citocinas/metabolismo , Femenino , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/clasificación , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Vacuolas/parasitología
10.
Infect Immun ; 82(1): 460-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24218483

RESUMEN

The obligate intracellular parasite Toxoplasma gondii is able to infect nearly all nucleated cell types of warm-blooded animals. This is achieved through the injection of hundreds of parasite effectors into the host cell cytosol, allowing the parasite to establish a vacuolar niche for growth, replication, and persistence. Here we show that Toxoplasma infection actives an inflammasome response in mice and rats, an innate immune sensing system designed to survey the host cytosol for foreign components leading to inflammation and cell death. Oral infection with Toxoplasma triggers an inflammasome response that is protective to the host, limiting parasite load and dissemination. Toxoplasma infection is sufficient to generate an inflammasome response in germfree animals. Interleukin 1ß (IL-1ß) secretion by macrophage requires the effector caspases 1 and 11, the adapter ASC, and NLRP1, the sensor previously described to initiate the inflammasome response to Bacillus anthracis lethal factor. The allele of NLRP1b derived from 129 mice is sufficient to enhance the B6 bone marrow-derived macrophage (BMDM) inflammasome response to Toxoplasma independent of the lethal factor proteolysis site. Moreover, N-terminal processing of NLRP1b, the only mechanism of activation known to date, is not observed in response to Toxoplasma infection. Cumulatively, these data indicate that NLRP1 is an innate immune sensor for Toxoplasma infection, activated via a novel mechanism that corresponds to a host-protective innate immune response to the parasite.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Inmunidad Innata/inmunología , Inflamasomas/metabolismo , Toxoplasma/fisiología , Toxoplasmosis Animal/fisiopatología , Animales , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos , Ratas , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Toxoplasma/inmunología , Toxoplasmosis Animal/metabolismo
11.
Nature ; 456(7222): 658-62, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-18820679

RESUMEN

Mammalian Toll-like receptors (TLRs) 3, 7, 8 and 9 initiate immune responses to infection by recognizing microbial nucleic acids; however, these responses come at the cost of potential autoimmunity owing to inappropriate recognition of self nucleic acids. The localization of TLR9 and TLR7 to intracellular compartments seems to have a role in facilitating responses to viral nucleic acids while maintaining tolerance to self nucleic acids, yet the cell biology regulating the transport and localization of these receptors remains poorly understood. Here we define the route by which TLR9 and TLR7 exit the endoplasmic reticulum and travel to endolysosomes in mouse macrophages and dendritic cells. The ectodomains of TLR9 and TLR7 are cleaved in the endolysosome, such that no full-length protein is detectable in the compartment where ligand is recognized. Notably, although both the full-length and cleaved forms of TLR9 are capable of binding ligand, only the processed form recruits MyD88 on activation, indicating that this truncated receptor, rather than the full-length form, is functional. Furthermore, conditions that prevent receptor proteolysis, including forced TLR9 surface localization, render the receptor non-functional. We propose that ectodomain cleavage represents a strategy to restrict receptor activation to endolysosomal compartments and prevent TLRs from responding to self nucleic acids.


Asunto(s)
Procesamiento Proteico-Postraduccional , Receptor Toll-Like 9/química , Receptor Toll-Like 9/metabolismo , Animales , Línea Celular , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Aparato de Golgi/metabolismo , Ligandos , Lisosomas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Fagosomas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptor Toll-Like 7/química , Receptor Toll-Like 7/metabolismo
12.
Adv Healthc Mater ; : e2400249, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648258

RESUMEN

The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.

13.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538595

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Asunto(s)
Toxoplasma , Vacuolas , Animales , Humanos , Ratones , Interferones/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Toxoplasma/metabolismo , Vacuolas/metabolismo
14.
Trends Parasitol ; 39(12): 1074-1086, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839913

RESUMEN

Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.


Asunto(s)
Parásitos , Plasmodium , Infecciones por Protozoos , Toxoplasma , Animales , Humanos , Interacciones Huésped-Parásitos , Infecciones por Protozoos/parasitología , Parásitos/fisiología , Plasmodium/fisiología
15.
Heliyon ; 9(7): e17411, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456044

RESUMEN

Cachexia is a life-threatening disease characterized by chronic, inflammatory muscle wasting and systemic metabolic impairment. Despite its high prevalence, there are no efficacious therapies for cachexia. Mice chronically infected with the protozoan parasite Toxoplasma gondii represent a novel animal model recapitulating the chronic kinetics of cachexia. To understand how perturbations to metabolic tissue homeostasis influence circulating metabolite availability we used mass spectrometry analysis. Despite the significant reduction in circulating triacylglycerides, non-esterified fatty acids, and glycerol, sphingolipid long-chain bases and a subset of phosphatidylcholines (PCs) were significantly increased in the sera of mice with T. gondii infection-induced cachexia. In addition, the TCA cycle intermediates α-ketoglutarate, 2-hydroxyglutarate, succinate, fumarate, and malate were highly depleted in cachectic mouse sera. Sphingolipids and their de novo synthesis precursors PCs are the major components of the mitochondrial membrane and regulate mitochondrial function consistent with a causal relationship in the energy imbalance driving T. gondii-induced chronic cachexia.

16.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546987

RESUMEN

Toxoplasma gondii is an obligate intracellular, protozoan pathogen of rodents and humans. T. gondii's ability to grow within cells and evade cell-autonomous immunity depends on the integrity of the parasitophorous vacuole (PV). Interferon-inducible guanylate binding proteins (GBPs) are central mediators of T. gondii clearance, however, the precise mechanism linking GBP recruitment to the PV and T. gondii restriction is not clear. This knowledge gap is linked to heterogenous GBP-targeting across a population of vacuoles and the lack of tools to selectively purify the intact PV. To identify mediators of parasite clearance associated with GBP2-positive vacuoles, we employed a novel protein discovery tool automated spatially targeted optical micro proteomics (autoSTOMP). This approach identified inducible nitric oxide synthetase (iNOS) enriched at levels similar to the GBPs in infected bone marrow-derived myeloid cells. iNOS expression on myeloid cells was necessary for mice to control T. gondii growth in vivo and survive acute infection. T. gondii infection of IFNγ-primed macrophage was sufficient to robustly induce iNOS expression. iNOS restricted T. gondii infection through nitric oxide synthesis rather than arginine depletion, leading to robust and selective nitration of the PV. Optimal parasite restriction by iNOS and vacuole nitration depended on the chromosome 3 GBPs. Notably, GBP2 recruitment and ruffling of the PV membrane occurred in iNOS knockouts, however, these vacuoles contained dividing parasites. iNOS activity was necessary for the collapse of the intravacuolar network of nanotubular membranes which connects parasites to each other and the host cytosol. Based on these data we conclude reactive nitrogen species generated by iNOS cooperate with the chromosome 3 GBPs to target distinct biology of the PV that are necessary for optimal parasite clearance in murine myeloid cells.

17.
Nat Aging ; 3(7): 796-812, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37277641

RESUMEN

Mitochondrial dysfunction is linked to age-associated inflammation or inflammaging, but underlying mechanisms are not understood. Analyses of 700 human blood transcriptomes revealed clear signs of age-associated low-grade inflammation. Among changes in mitochondrial components, we found that the expression of mitochondrial calcium uniporter (MCU) and its regulatory subunit MICU1, genes central to mitochondrial Ca2+ (mCa2+) signaling, correlated inversely with age. Indeed, mCa2+ uptake capacity of mouse macrophages decreased significantly with age. We show that in both human and mouse macrophages, reduced mCa2+ uptake amplifies cytosolic Ca2+ oscillations and potentiates downstream nuclear factor kappa B activation, which is central to inflammation. Our findings pinpoint the mitochondrial calcium uniporter complex as a keystone molecular apparatus that links age-related changes in mitochondrial physiology to systemic macrophage-mediated age-associated inflammation. The findings raise the exciting possibility that restoring mCa2+ uptake capacity in tissue-resident macrophages may decrease inflammaging of specific organs and alleviate age-associated conditions such as neurodegenerative and cardiometabolic diseases.


Asunto(s)
Calcio , Proteínas de Transporte de Membrana Mitocondrial , Ratones , Animales , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Calcio/metabolismo , Mitocondrias/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Proteínas de Unión al Calcio/genética
18.
Cell Rep Methods ; 2(8): 100274, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046624

RESUMEN

Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii.


Asunto(s)
Toxoplasma , Ratones , Animales , Toxoplasma/genética , Proteínas Protozoarias/genética , Ratones Endogámicos CBA , Virulencia , Encéfalo/metabolismo
19.
J Clin Invest ; 130(7): 3370-3380, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609097

RESUMEN

Toxoplasma gondii is an incredibly successful parasite owing in part to its ability to persist within cells for the life of the host. Remarkably, at least 350 host species of T. gondii have been described to date, and it is estimated that 30% of the global human population is chronically infected. The importance of T. gondii in human health was made clear with the first reports of congenital toxoplasmosis in the 1940s. However, the AIDS crisis in the 1980s revealed the prevalence of chronic infection, as patients presented with reactivated chronic toxoplasmosis, underscoring the importance of an intact immune system for parasite control. In the last 40 years, there has been tremendous progress toward understanding the biology of T. gondii infection using rodent models, human cell experimental systems, and clinical data. However, there are still major holes in our understanding of T. gondii biology, including the genes controlling parasite development, the mechanisms of cell-intrinsic immunity to T. gondii in the brain and muscle, and the long-term effects of infection on host homeostasis. The need to better understand the biology of chronic infection is underscored by the recent rise in ocular disease associated with emerging haplotypes of T. gondii and our lack of effective treatments to sterilize chronic infection. This Review discusses the cell types and molecular mediators, both host and parasite, that facilitate persistent T. gondii infection. We highlight the consequences of chronic infection for tissue-specific pathology and identify open questions in this area of host-Toxoplasma interactions.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Modelos Animales de Enfermedad , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasma/metabolismo , Toxoplasmosis/genética , Toxoplasmosis/historia , Toxoplasmosis/inmunología , Toxoplasmosis/metabolismo
20.
mSphere ; 5(5)2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907954

RESUMEN

The intracellular parasite Toxoplasma gondii resides within a membrane-bound parasitophorous vacuole (PV) and secretes an array of proteins to establish this replicative niche. It has been shown previously that Toxoplasma secretes kinases and that numerous proteins are phosphorylated after secretion. Here, we assess the role of the phosphorylation of strand-forming protein 1 (SFP1) and the related protein GRA29, two secreted proteins with unknown function. We show that both proteins form stranded structures in the PV that are independent of the previously described intravacuolar network or actin. SFP1 and GRA29 can each form these structures independently of other Toxoplasma secreted proteins, although GRA29 appears to regulate SFP1 strands. We show that an unstructured region at the C termini of SFP1 and GRA29 is required for the formation of strands and that mimicking the phosphorylation of this domain of SFP1 negatively regulates strand development. When tachyzoites convert to chronic-stage bradyzoites, both proteins show a dispersed localization throughout the cyst matrix. Many secreted proteins are reported to dynamically redistribute as the cyst forms, and secreted kinases are known to play a role in cyst formation. Using quantitative phosphoproteome and proteome analyses comparing tachyzoite and early bradyzoite stages, we reveal widespread differential phosphorylation of secreted proteins. While we found no direct evidence for phosphorylation playing a dominant role for SFP1/GRA29 redistribution in the cyst, these data support a model in which secreted kinases and phosphatases contribute to the regulation of secreted proteins during stage conversion.IMPORTANCEToxoplasma gondii is a common parasite that infects up to one-third of the human population. Initially, the parasite grows rapidly, infecting and destroying cells of the host, but subsequently switches to a slow-growing form and establishes chronic infection. In both stages, the parasite lives within a membrane-bound vacuole within the host cell, but in the chronic stage, a durable cyst wall is synthesized, which provides protection to the parasite during transmission to a new host. Toxoplasma secretes proteins into the vacuole to build its replicative niche, and previous studies identified many of these proteins as phosphorylated. We investigate two secreted proteins and show that a phosphorylated region plays an important role in their regulation in acute stages. We also observed widespread phosphorylation of secreted proteins when parasites convert from acute to chronic stages, providing new insight into how the cyst wall may be dynamically regulated.


Asunto(s)
Proteínas Protozoarias/metabolismo , Toxoplasma/patogenicidad , Vacuolas/metabolismo , Animales , Transporte Biológico , Fibroblastos/parasitología , Prepucio/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteoma , Proteínas Protozoarias/genética , Organismos Libres de Patógenos Específicos , Toxoplasma/genética , Vacuolas/parasitología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda