Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
País como asunto
Tipo del documento
Publication year range
1.
Sci Total Environ ; 825: 153952, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189222

RESUMEN

Kelp forests affect coastal circulation but their influence on upwelling around headlands is poorly understood. Tidal-cycle surveys off two headlands with contrasting kelp coverage illustrated the influence of kelp forests on headland upwelling. Underway acoustic Doppler current and backscatter profiles were collected simultaneously to surface water temperature. Surveys occurred along three off-headland transects in July 25-29, 2018, off Isla Natividad, located midway on the western coast of the Baja California peninsula. Flows and water temperature distributions off the headland with no kelp coverage were consistent with headland upwelling. In contrast, the kelp around the headland with dense coverage: 1) attenuated the ambient flow; 2) favored an increase in effective radius of flow curvature; 3) promoted flow ducting, which consists of enhancing flow through channels unobstructed by kelp; and 4) suppressed headland upwelling. Kelp suppressed upwelling by channeling the flow away from the headland, keeping nearshore waters warmer than offshore. PLAIN LANGUAGE ABSTRACT: This study documents a way in which biology can affect physics in coastal ocean environments. In particular, the study describes how a kelp forest suppresses the upward pumping of cool subsurface waters that is typically found around headlands. Such suppression of subsurface waters injection occurs via a process that we refer to as 'flow ducting.' In flow ducting, coastal flows are channelized through kelp gaps, concentrated in bands <30 m wide, and kept away from the morphological influences of a headland. This ducting is analogous to the tortuous flow through porous media.


Asunto(s)
Kelp , Ecosistema , Bosques , México , Agua
2.
Sci Rep ; 10(1): 14227, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848179

RESUMEN

Climate change is expected to warm, deoxygenate, and acidify ocean waters. Global climate models (GCMs) predict future conditions at large spatial scales, and these predictions are then often used to parameterize laboratory experiments designed to assess biological and ecological responses to future change. However, nearshore ecosystems are affected by a range of physical processes such as tides, local winds, and surface and internal waves, causing local variability in conditions that often exceeds global climate models. Predictions of future climatic conditions at local scales, the most relevant to ecological responses, are largely lacking. To fill this critical gap, we developed a 2D implementation of the Regional Ocean Modeling System (ROMS) to downscale global climate predictions across all Representative Concentration Pathway (RCP) scenarios to smaller spatial scales, in this case the scale of a temperate reef in the northeastern Pacific. To assess the potential biological impacts of local climate variability, we then used the results from different climate scenarios to estimate how climate change may affect the survival, growth, and fertilization of a representative marine benthic invertebrate, the red abalone Haliotis rufescens, to a highly varying multi-stressor environment. We found that high frequency variability in temperature, dissolved oxygen (DO), and pH increases as pCO2 increases in the atmosphere. Extreme temperature and pH conditions are generally not expected until RCP 4.5 or greater, while frequent exposure to low DO is already occurring. In the nearshore environment simulation, strong RCP scenarios can affect red abalone growth as well as reduce fertilization during extreme conditions when compared to global scale simulations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda