RESUMEN
Scientists have been trying to identify every gene in the human genome since the initial draft was published in 2001. In the years since, much progress has been made in identifying protein-coding genes, currently estimated to number fewer than 20,000, with an ever-expanding number of distinct protein-coding isoforms. Here we review the status of the human gene catalogue and the efforts to complete it in recent years. Beside the ongoing annotation of protein-coding genes, their isoforms and pseudogenes, the invention of high-throughput RNA sequencing and other technological breakthroughs have led to a rapid growth in the number of reported non-coding RNA genes. For most of these non-coding RNAs, the functional relevance is currently unclear; we look at recent advances that offer paths forward to identifying their functions and towards eventually completing the human gene catalogue. Finally, we examine the need for a universal annotation standard that includes all medically significant genes and maintains their relationships with different reference genomes for the use of the human gene catalogue in clinical settings.
Asunto(s)
Genes , Genoma Humano , Anotación de Secuencia Molecular , Isoformas de Proteínas , Humanos , Genoma Humano/genética , Anotación de Secuencia Molecular/normas , Anotación de Secuencia Molecular/tendencias , Isoformas de Proteínas/genética , Proyecto Genoma Humano , Seudogenes , ARN/genéticaAsunto(s)
Investigación Biomédica , Etnicidad , Humanos , Etnicidad/genética , Grupos Raciales/genéticaRESUMEN
The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.
Asunto(s)
Células Madre Embrionarias/citología , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/fisiología , Proteína Smad1/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Línea Celular , Células Madre Embrionarias/metabolismo , Endodermo/citología , Gastrulación/fisiología , Humanos , Mesodermo/citología , Ratones , Ratones Transgénicos , Proteína Smad2/metabolismo , Proteína smad3/metabolismoRESUMEN
Neural crest is a source of diverse cell types, including the peripheral nervous system. The transcription factor Sox10 is expressed throughout early neural crest. We exploited Sox10 reporter and selection markers created by homologous recombination to investigate the generation, maintenance and expansion of neural crest progenitors. Sox10-GFP-positive cells are produced transiently from mouse embryonic stem (ES) cells by treatment with retinoic acid in combination with Fgf8b and the cytokine leukaemia inhibitory factor (Lif). We found that expression of Sox10 can be maintained using noggin, Wnt3a, Lif and endothelin (NWLE). ES cell-derived Sox10-GFP-positive cells cultured in NWLE exhibit molecular markers of neural crest progenitors. They differentiate into peripheral neurons in vitro and are able to colonise the enteric network in organotypic gut cultures. Neural crest cells purified from embryos using the Sox10 reporter also survive in NWLE, but progressively succumb to differentiation. We therefore applied selection to eliminate differentiating cells. Sox10-selected cells could be clonally expanded, cryopreserved, and multiplied for over 50 days in adherent culture. They remained neurogenic in vitro and in foetal gut grafts. Generation of neural crest from mouse ES cells opens a new route to the identification and validation of determination factors. Furthermore, the ability to propagate undifferentiated progenitors creates an opportunity for experimental dissection of the stimuli and molecular circu that govern neural crest lineage progression. Finally, the demonstration of robust enteric neurogenesis provides a system for investigating and modelling cell therapeutic approaches to neurocristopathies such as Hirschsprung's disease.
Asunto(s)
Embrión de Mamíferos/citología , Células Madre Embrionarias/fisiología , Sistema Nervioso Entérico/embriología , Ratones/embriología , Cresta Neural/citología , Células Madre/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Separación Celular/métodos , Células Cultivadas , Embrión de Mamíferos/embriología , Células Madre Embrionarias/metabolismo , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/fisiología , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Cresta Neural/embriología , Neurogénesis/genética , Neurogénesis/fisiología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Células Madre/metabolismo , Células Madre/fisiología , TransfecciónRESUMEN
Scientists have been trying to identify all of the genes in the human genome since the initial draft of the genome was published in 2001. Over the intervening years, much progress has been made in identifying protein-coding genes, and the estimated number has shrunk to fewer than 20,000, although the number of distinct protein-coding isoforms has expanded dramatically. The invention of high-throughput RNA sequencing and other technological breakthroughs have led to an explosion in the number of reported non-coding RNA genes, although most of them do not yet have any known function. A combination of recent advances offers a path forward to identifying these functions and towards eventually completing the human gene catalogue. However, much work remains to be done before we have a universal annotation standard that includes all medically significant genes, maintains their relationships with different reference genomes, and describes clinically relevant genetic variants.