Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
J Cardiovasc Pharmacol ; 83(1): 105-115, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180457

RESUMEN

ABSTRACT: Mounting evidence suggests that cytochrome P450 epoxygenase-derived metabolites of docosahexaenoic acid, called epoxydocosapentaenoic acids (EDPs), limit mitochondrial damage after cardiac injury. In particular, the 19,20-EDP regioisomer has demonstrated potent cardioprotective action. Thus, we investigated our novel synthetic 19,20-EDP analog SA-22 for protection against cardiac ischemia-reperfusion (IR) injury. Isolated C57BL/6J mouse hearts were perfused through Langendorff apparatus for 20 minutes to obtain baseline function, followed by 30 minutes of global ischemia. Hearts were then treated with vehicle, 19,20-EDP, SA-22, or SA-22 with the pan-sirtuin inhibitor nicotinamide or the SIRT3-selective inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) at the start of 40 minutes reperfusion (N = 5-8). We assessed IR injury-induced changes in recovery of myocardial function, using left ventricular developed pressure and systolic and diastolic pressure change. Tissues were assessed for electron transport chain function, SIRT1 and SIRT3, optic atrophy type 1, and caspase-1. We also used H9c2 cells in an in vitro model of hypoxia/reoxygenation injury (N = 3-6). Hearts perfused with SA-22 had significantly improved postischemic left ventricular developed pressure, systolic and diastolic recovery (64% of baseline), compared with vehicle control (15% of baseline). In addition, treatment with SA-22 led to better catalytic function observed in electron transport chain and SIRT enzymes. The protective action of SA-22 resulted in reduced activation of pyroptosis in both hearts and cells after injury. Interestingly, although nicotinamide cotreatment worsened functional outcomes, cell survival, and attenuated sirtuin activity, it failed to completely attenuate SA-22-induced protection against pyroptosis, possibly indicating EDPs exert cytoprotection through pleiotropic mechanisms. In short, these data demonstrate the potential of our novel synthetic 19,20-EDP analog, SA-22, against IR/hypoxia-reoxygenation injury and justify further development of therapeutic agents based on 19,20-EDP.


Asunto(s)
Sirtuina 3 , Ratones , Animales , Ratones Endogámicos C57BL , Hipoxia , Isquemia , Niacinamida
2.
J Am Chem Soc ; 144(39): 17989-17998, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36161865

RESUMEN

Iminodirhodium reactive intermediates generated in situ from O-tosyloximes using Rh2(esp)2 in CH2Cl2 at rt were exploited for an agile trichotomy of challenging transformations: (1) remote C-H functionalizations using an exceptionally broad diversity of inorganic and organic nucleophiles including several unconventional examples, for example, ethers and acyl silanes; (2) desaturative annulation, a biomimetic 1,3-methylene C-C ring-closure with an overall loss of two hydrogens; and (3) directed desaturation for the acceptor-less, regioselective creation of γ,δ- or γ,δ,ε,ζ-olefins. Compared with typical iminyl transition-metal-mediated and 1,5-hydrogen atom-transfer (1,5-HAT) processes, iminodirhodium intermediates are largely underexplored, especially with respect to C(sp3)-H centers and, yet, have the potential to be transformative by virtue of their substrate breadth, regiocontrol, and elusive reaction modality. A substrate scope includes benzylic, allylic, propargylic, tertiary, and α-alkyloxy centers.


Asunto(s)
Hidrógeno , Silanos , Alquenos , Catálisis , Éteres
3.
J Pharmacol Exp Ther ; 381(3): 204-216, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35306474

RESUMEN

Compensatory angiogenesis is an important adaptation for recovery from critical ischemia. We recently identified 20-hydroxyeicosatetraenoic acid (20-HETE) as a novel contributor of ischemia-induced angiogenesis. However, the precise mechanisms by which ischemia promotes 20-HETE increases that drive angiogenesis are unknown. This study aims to address the hypothesis that inflammatory neutrophil-derived myeloperoxidase (MPO) and hypochlorous acid (HOCl) critically contribute to 20-HETE increases leading to ischemic angiogenesis. Using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry, Laser Doppler Perfusion Imaging, and Microvascular Density analysis, we found that neutrophil depletion and MPO knockout mitigate angiogenesis and 20-HETE production in the gracilis muscles of mice subjected to hindlimb ischemia. Furthermore, we found MPO and HOCl to be elevated in these tissues postischemia as assessed by immunofluorescence microscopy and in vivo live imaging of HOCl. Next, we demonstrated that the additions of either HOCl or an enzymatic system for generating HOCl to endothelial cells increase the expression of CYP4A11 and its product, 20-HETE. Finally, pharmacological interference of hypoxia inducible factor (HIF) signaling results in ablation of HOCl-induced CYP4A11 transcript and significant reductions in CYP4A11 protein. Collectively, we conclude that neutrophil-derived MPO and its product HOCl activate HIF-1α and CYP4A11 leading to increased 20-HETE production that drives postischemic compensatory angiogenesis. SIGNIFICANCE STATEMENT: Traditionally, neutrophil derived MPO and HOCl are exclusively associated in the innate immunity as potent bactericidal/virucidal factors. The present study establishes a novel paradigm by proposing a unique function for MPO/HOCl as signaling agents that drive critical physiological angiogenesis by activating the CYP4A11-20-HETE signaling axis via a HIF-1α-dependent mechanism. The findings from this study potentially identify novel therapeutic targets for the treatment of ischemia and other diseases associated with abnormal angiogenesis.


Asunto(s)
Ácido Hipocloroso , Peroxidasa , Animales , Células Endoteliales/metabolismo , Ácidos Hidroxieicosatetraenoicos , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/farmacología , Isquemia/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neutrófilos/metabolismo , Peroxidasa/metabolismo
4.
J Cardiovasc Pharmacol ; 80(2): 276-293, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35323151

RESUMEN

ABSTRACT: The orphan receptor, G protein-coupled receptor (GPR) 75, which has been shown to mediate various effects of 20-hydroxyeicosatetraenoic acid (20-HETE), is considered as a therapeutic target in the treatment of cardiovascular diseases in which changes in the production of 20-HETE play a key role in their pathogenesis. Our previous studies showed that 20-HETE mimetic, N -(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), protects against vascular hyporeactivity, hypotension, tachycardia, and arterial inflammation induced by lipopolysaccharide (LPS) in rats. This study tested the hypothesis that the GPR75 signaling pathway mediates these effects of 5,14-HEDGE in response to systemic exposure to LPS. Mean arterial pressure reduced by 33 mm Hg, and heart rate increased by 102 beats/min at 4 hours following LPS injection. Coimmunoprecipitation studies demonstrated that (1) the dissociation of GPR75/Gα q/11 and GPR kinase interactor 1 (GIT1)/protein kinase C (PKC) α, the association of GPR75/GIT1, large conductance voltage and calcium-activated potassium subunit ß (MaxiKß)/PKCα, MaxiKß/proto-oncogene tyrosine-protein kinase (c-Src), and epidermal growth factor receptor (EGFR)/c-Src, MaxiKß, and EGFR tyrosine phosphorylation were decreased, and (2) the association of GIT1/c-Src was increased in the arterial tissues of rats treated with LPS. The LPS-induced changes were prevented by 5,14-HEDGE. N -[20-Hydroxyeicosa-6( Z ),15( Z )-dienoyl]glycine, a 20-HETE antagonist, reversed the effects of 5,14-HEDGE in the arterial tissues of LPS-treated rats. Thus, similar to 20-HETE, by binding to GPR75 and activating the Gα q/11 /PKCα/MaxiKß, GIT1/PKCα/MaxiKß, GIT1/c-Src/MaxiKß, and GIT1/c-Src/EGFR signaling pathways, 5,14-HEDGE may exert its protective effects against LPS-induced hypotension and tachycardia associated with vascular hyporeactivity and arterial inflammation.


Asunto(s)
Arteritis , Hipotensión , Choque Séptico , Animales , Proteínas de Ciclo Celular/metabolismo , Receptores ErbB/metabolismo , Glicina , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipotensión/inducido químicamente , Hipotensión/prevención & control , Lipopéptidos , Lipopolisacáridos/toxicidad , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/farmacología , Ratas , Choque Séptico/inducido químicamente , Choque Séptico/tratamiento farmacológico , Choque Séptico/prevención & control , Transducción de Señal , Taquicardia , Tirosina/farmacología , Tirosina/uso terapéutico
5.
Prostaglandins Other Lipid Mediat ; 152: 106485, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33011364

RESUMEN

20-HETE, a metabolite of arachidonic acid produced by Cytochrome P450 (CYP) 4A/4 F, has been implicated in the development of obesity-associated complications such as diabetes and insulin resistance. In this study, we examined whether the acute elevation of 20-HETE levels contributes to the development of diet-driven hyperglycemia and insulin resistance. We employed a conditional transgenic mouse model to overexpress Cyp4a12 (Cyp4a12tg), a murine 20-HETE synthase, together with high fat diet (HFD) feeding. Mice in which Cyp4a12 was induced by doxycycline (DOX) at the onset of HFD feeding gained weight at a greater rate and extent than corresponding DOX-untreated Cyp4a12 mice. Cyp4a12tg mice fed HFD + DOX displayed hyperglycemia and impaired glucose metabolism while corresponding HFD-fed Cyp4a12tg mice (no DOX) did not. Importantly, administration of a 20-HETE antagonist, 20-SOLA, to Cyp4a12tg mice fed HFD + DOX significantly attenuated weight gain and prevented the development of hyperglycemia and impaired glucose metabolism. Levels of insulin receptor (IR) phosphorylation at Tyrosine 972 and insulin receptor substrate-1 (IRS1) phosphorylation at serine 307 were markedly decreased and increased, respectively, in liver, skeletal muscle and adipose tissues from Cyp4a12tg mice fed HFD + DOX; 20-SOLA prevented the IR and IRS1 inactivation, suggesting that 20-HETE interferes with insulin signaling. Additional studies in 3T3-1 differentiated adipocytes confirmed that 20-HETE impairs insulin signaling and that its effect may require activation of its receptor GPR75. Taken together, these results provide strong evidence that 20-HETE interferes with insulin function and contributed to diet-driven insulin resistance.


Asunto(s)
Ácidos Hidroxieicosatetraenoicos , Resistencia a la Insulina , Obesidad , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa , Hígado/metabolismo , Masculino , Ratones , Fosforilación , Transducción de Señal
6.
Org Biomol Chem ; 19(3): 557-560, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33399609

RESUMEN

A mild Rh-catalyzed method for synthesis of cyclic unprotected N-Me and N-H 2,3-aminoethers using an olefin aziridination-aziridine ring-opening domino reaction has been developed. The method is readily applicable to the stereocontrolled synthesis of a variety of 2,3-disubstituted aminoether O-heterocyclic scaffolds, including tetrahydrofurans, tetrahydropyrans and chromanes.


Asunto(s)
Éteres/química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/síntesis química , Nitrógeno/química , Técnicas de Química Sintética , Hidrógeno/química , Estereoisomerismo
7.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33801911

RESUMEN

Although epoxyeicosatrienoic acid (EET) analogs have performed well in several acute and chronic kidney disease models, targeted delivery of EET analogs to the kidney can be reasonably expected to reduce the level of drug needed to achieve a therapeutic effect and obviate possible side effects. For EET analog kidney-targeted delivery, we conjugated a stable EET analog to folic acid via a PEG-diamine linker. Next, we compared the kidney targeted EET analog, EET-F01, to a well-studied EET analog, EET-A. EET-A or EET-F01 was infused i.v. and plasma and kidney tissue collected. EET-A was detected in the plasma but was undetectable in the kidney. On the other hand, EET-F01 was detected in the plasma and kidney. Experiments were conducted to compare the efficacy of EET-F01 and EET-A for decreasing cisplatin nephrotoxicity. Cisplatin was administered to WKY rats treated with vehicle, EET-A (10 mg/kg i.p.) or EET-F01 (20 mg/kg or 2 mg/kg i.p.). Cisplatin increased kidney injury markers, viz., blood urea nitrogen (BUN), N-acetyl-ß-(D)-glucosaminidase (NAG), kidney injury molecule-1 (KIM-1), and thiobarbituric acid reactive substances (TBARS). EET-F01 was as effective as EET-A in decreasing BUN, NAG, KIM-1, TBARS, and renal histological injury caused by cisplatin. Despite its almost 2×-greater molecular weight compared with EET-A, EET-F01 was comparably effective in decreasing renal injury at a 10-fold w/w lower dose. EET-F01 decreased cisplatin nephrotoxicity by reducing oxidative stress and inflammation. These data demonstrate that EET-F01 targets the kidney, allows for a lower effective dose, and combats cisplatin nephrotoxicity. In conclusion, we have developed a kidney targeted EET analog, EET-F01, that demonstrates excellent potential as a therapeutic for kidney diseases.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Neoplasias de la Mama/tratamiento farmacológico , Inflamación/prevención & control , Enfermedades Renales/prevención & control , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/farmacocinética , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cisplatino , Femenino , Humanos , Inflamación/metabolismo , Riñón/patología , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Masculino , Ratones Desnudos , Ratas Endogámicas WKY , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
8.
J Am Chem Soc ; 142(11): 5266-5271, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32090542

RESUMEN

Direct C-H functionalization of aromatic compounds is a powerful tool for organic synthesis; however, differentiation among the ubiquitous and often chemically similar C-H bonds remains a significant challenge. Conflation with coordinating or directing groups incorporated into the intended substrate has helped address these limitations, although access to remote sites remains limited. Herein, we report an operationally simple and sustainable direct meta-selective H2N amination of benzylic and related aromatic picolinates under conditions mild enough to modify polyfunctional and late-stage molecules.


Asunto(s)
Cloruros/química , Compuestos Férricos/química , Ácidos Picolínicos/química , Aminación , Compuestos de Anilina/síntesis química , Catálisis , Hidroxilaminas/química , Estructura Molecular , Ácidos Picolínicos/síntesis química
9.
Exp Cell Res ; 380(2): 180-187, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039348

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and is considered to be an inflammatory disorder characterized by fatty acid accumulation, oxidative stress, and lipotoxicity. We have previously reported that epoxyeicosatrienoic acid-agonist (EET-A) has multiple beneficial effects on cardiac, renal and adipose tissue function while exhibiting both anti-inflammatory and anti-oxidant activities. We hypothesized that EET-A intervention would play a central role in attenuation of obesity-induced steatosis and hepatic fibrosis that leads to NAFLD. METHODS: We studied the effect of EET-A on fatty liver using db/db mice as a model of obesity. Mice were fed a high fat diet (HFD) for 16 weeks and administered EET-A twice weekly for the final 8 weeks. RESULTS: db/db mice fed HFD significantly increased hepatic lipid accumulation as manifested by increases in NAS scores, hepatic fibrosis, insulin resistance, and inflammation, and decreases in mitochondrial mitofusin proteins (Mfn 1/2) and anti-obesity genes Fibroblast growth factor 21 (FGF21) and Cellular Repressor of E1A-Stimulated Genes 1 (CREG1). EET-A administration reversed the decrease in these genes and reduced liver fibrosis. Knockout of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in EET-A treated mice resulted in a reversal of the beneficial effects of EET-A administration. CONCLUSIONS: EET-A intervention diminishes fatty acid accumulation, fibrosis, and NFALD associated with an increase in HO-1-PGC1α and increased insulin receptor phosphorylation. A pharmacological strategy involving EETs may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the development of NAFLD.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Hemo-Oxigenasa 1/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Leptina/deficiencia , Transducción de Señal/efectos de los fármacos , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Modelos Animales de Enfermedad , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores de Leptina/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(36): E7545-E7553, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827330

RESUMEN

Age-related macular degeneration (AMD) is the most common cause of blindness for individuals age 50 and above in the developed world. Abnormal growth of choroidal blood vessels, or choroidal neovascularization (CNV), is a hallmark of the neovascular (wet) form of advanced AMD and leads to significant vision loss. A growing body of evidence supports a strong link between neovascular disease and inflammation. Metabolites of long-chain polyunsaturated fatty acids derived from the cytochrome P450 (CYP) monooxygenase pathway serve as vital second messengers that regulate a number of hormones and growth factors involved in inflammation and vascular function. Using transgenic mice with altered CYP lipid biosynthetic pathways in a mouse model of laser-induced CNV, we characterized the role of these lipid metabolites in regulating neovascular disease. We discovered that the CYP-derived lipid metabolites epoxydocosapentaenoic acids (EDPs) and epoxyeicosatetraenoic acids (EEQs) are vital in dampening CNV severity. Specifically, overexpression of the monooxygenase CYP2C8 or genetic ablation or inhibition of the soluble epoxide hydrolase (sEH) enzyme led to increased levels of EDP and EEQ with attenuated CNV development. In contrast, when we promoted the degradation of these CYP-derived metabolites by transgenic overexpression of sEH, the protective effect against CNV was lost. We found that these molecules work in part through their ability to regulate the expression of key leukocyte adhesion molecules, on both leukocytes and endothelial cells, thereby mediating leukocyte recruitment. These results suggest that CYP lipid signaling molecules and their regulators are potential therapeutic targets in neovascular diseases.


Asunto(s)
Neovascularización Coroidal/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Metabolismo de los Lípidos/fisiología , Sistemas de Mensajero Secundario/fisiología , Animales , Citocromo P-450 CYP2C8/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Epóxido Hidrolasas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Leucocitos/metabolismo , Degeneración Macular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722183

RESUMEN

While survival rates have markedly improved following cardiac ischemia-reperfusion (IR) injury, the resulting heart damage remains an important issue. Preserving mitochondrial quality and limiting NLRP3 inflammasome activation is an approach to limit IR injury, in which the mitochondrial deacetylase sirtuin 3 (SIRT3) has a role. Recent data demonstrate cytochrome P450 (CYP450)-derived epoxy metabolites, epoxydocosapentaenoic acids (EDPs), of docosahexaenoic acid (DHA), attenuate cardiac IR injury. EDPs undergo rapid removal and inactivation by enzymatic and non-enzymatic processes. The current study hypothesizes that the cardioprotective effects of the synthetic EDP surrogates AS-27, SA-26 and AA-4 against IR injury involve activation of SIRT3. Isolated hearts from wild type (WT) mice were perfused in the Langendorff mode with vehicle, AS-27, SA-26 or AA-4. Improved postischemic functional recovery, maintained cardiac ATP levels, reduced oxidative stress and attenuation of NLRP3 activation were observed in hearts perfused with the analogue SA-26. Assessment of cardiac mitochondria demonstrated SA-26 preserved SIRT3 activity and reduced acetylation of manganese superoxide dismutase (MnSOD) suggesting enhanced antioxidant capacity. Together, these data demonstrate that the cardioprotective effects of the EDP analogue SA-26 against IR injury involve preservation of mitochondrial SIRT3 activity, which attenuates a detrimental innate NLRP3 inflammasome response.


Asunto(s)
Ácidos Docosahexaenoicos , Daño por Reperfusión Miocárdica , Miocardio/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sirtuina 3/metabolismo , Animales , Ácidos Docosahexaenoicos/análogos & derivados , Ácidos Docosahexaenoicos/síntesis química , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/farmacología , Femenino , Masculino , Ratones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocardio/patología
12.
J Biol Chem ; 293(27): 10675-10691, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29777058

RESUMEN

Endothelium-derived epoxyeicosatrienoic acids (EETs) have numerous vascular activities mediated by G protein-coupled receptors. Long-chain free fatty acids and EETs activate GPR40, prompting us to investigate the role of GPR40 in some vascular EET activities. 14,15-EET, 11,12-EET, arachidonic acid, and the GPR40 agonist GW9508 increase intracellular calcium concentrations in human GPR40-overexpressing HEK293 cells (EC50 = 0.58 ± 0.08 µm, 0.91 ± 0.08 µm, 3.9 ± 0.06 µm, and 19 ± 0.37 nm, respectively). EETs with cis- and trans-epoxides had similar activities, whereas substitution of a thiirane sulfur for the epoxide oxygen decreased the activities. 8,9-EET, 5,6-EET, and the epoxide hydrolysis products 11,12- and 14,15-dihydroxyeicosatrienoic acids were less active than 11,12-EET. The GPR40 antagonist GW1100 and siRNA-mediated GPR40 silencing blocked the EET- and GW9508-induced calcium increases. EETs are weak GPR120 agonists. GPR40 expression was detected in human and bovine endothelial cells (ECs), smooth muscle cells, and arteries. 11,12-EET concentration-dependently relaxed preconstricted coronary arteries; however, these relaxations were not altered by GW1100. In human ECs, 11,12-EET increased MAP kinase (MAPK)-mediated ERK phosphorylation, phosphorylation and levels of connexin-43 (Cx43), and expression of cyclooxygenase-2 (COX-2), all of which were inhibited by GW1100 and the MAPK inhibitor U0126. Moreover, siRNA-mediated GPR40 silencing decreased 11,12-EET-induced ERK phosphorylation. These results indicated that GPR40 is a low-affinity EET receptor in vascular cells and arteries. We conclude that epoxidation of arachidonic acid to EETs enhances GPR40 agonist activity and that 11,12-EET stimulation of GPR40 increases Cx43 and COX-2 expression in ECs via ERK phosphorylation.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Bovinos , Endotelio Vascular/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas de Placa-Clamp , Fosforilación , Receptores Acoplados a Proteínas G/genética
13.
Am J Physiol Heart Circ Physiol ; 316(6): H1468-H1479, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30951365

RESUMEN

20-Hydroxyeicosatetraenoic acid (20-HETE) was recently identified as a novel contributor of ischemia-induced neovascularization based on the key observation that pharmacological interferences of CYP4A/20-HETE decrease ischemic neovascularization. The objective of the present study is to examine whether the underlying cellular mechanisms involve endothelial progenitor cells (EPCs) and preexisting endothelial cells (ECs). We found that ischemia leads to a time-dependent increase of cyp4a12 expression and 20-HETE production, which are endothelial in origin, using immunofluorescent microscopy, Western blot analysis, and LC-MS/MS. This is accompanied by increases in the tissue stromal cell-derived factor-1α (SDF-1α) expressions as well as SDF-1α plasma levels, EPC mobilization from bone marrow, and subsequent homing to ischemic tissues. Pharmacological interferences of CYP4A/20-HETE with a 20-HETE synthesis inhibitor, dibromo-dodecenyl-methylsulfimide (DDMS), or a 20-HETE antagonist, N-(20-hydroxyeicosa-6(Z), 15(Z)-dienoyl) glycine (6, 15-20-HEDGE), significantly attenuated these increases. Importantly, we also determined that 20-HETE plays a novel role in maintaining EPC functions and increasing the expression of Oct4, Sox2, and Nanog, which are indicative of increased progenitor cell stemness. Flow cytometric analysis revealed that pharmacological interferences of CYP4A/20-HETE decrease the EPC population in culture, whereas 20-HETE increases the cultured EPC population. Furthermore, ischemia also markedly increased the proliferation, oxidative stress, and ICAM-1 expression in the preexisting EC in the hindlimb gracilis muscles. We found that these increases were markedly negated by DDMS and 6, 15-20-HEDGE. Taken together, CYP4A/20-HETE regulates ischemia-induced compensatory neovascularization via its combined actions on promoting EPC and local preexisting EC responses that are associated with increased neovascularization. NEW & NOTEWORTHY CYP4A/20-hydroxyeicosatetraenoic acid (20-HETE) was recently discovered as a novel contributor of ischemia-induced neovascularization. However, the underlying molecular and cellular mechanisms are completely unknown. Here, we show that CYP4A/20-HETE regulates the ischemic neovascularization process via its combined actions on both endothelial progenitor cells (EPCs) and preexisting endothelial cells. Moreover, this is the first study, to the best of our knowledge, that associates CYP4A/20-HETE with EPC differentiation and stemness.


Asunto(s)
Citocromo P-450 CYP4A/metabolismo , Células Endoteliales/enzimología , Células Progenitoras Endoteliales/enzimología , Ácidos Hidroxieicosatetraenoicos/metabolismo , Isquemia/enzimología , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Animales , Células Cultivadas , Quimiocina CXCL12/metabolismo , Familia 4 del Citocromo P450/metabolismo , Modelos Animales de Enfermedad , Miembro Posterior , Humanos , Isquemia/fisiopatología , Masculino , Ratones Endogámicos BALB C , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Tiempo
15.
Clin Sci (Lond) ; 133(8): 939-951, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30979784

RESUMEN

Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.


Asunto(s)
Ácidos Araquidónicos/administración & dosificación , Infarto del Miocardio/tratamiento farmacológico , Animales , Ácidos Araquidónicos/química , Presión Sanguínea , Modelos Animales de Enfermedad , Corazón/fisiopatología , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Masculino , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas SHR
16.
Circ Res ; 120(11): 1776-1788, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28325781

RESUMEN

RATIONALE: 20-Hydroxyeicosatetraenoic acid (20-HETE), one of the principle cytochrome P450 eicosanoids, is a potent vasoactive lipid whose vascular effects include stimulation of smooth muscle contractility, migration, and proliferation, as well as endothelial cell dysfunction and inflammation. Increased levels of 20-HETE in experimental animals and in humans are associated with hypertension, stroke, myocardial infarction, and vascular diseases. OBJECTIVE: To date, a receptor/binding site for 20-HETE has been implicated based on the use of specific agonists and antagonists. The present study was undertaken to identify a receptor to which 20-HETE binds and through which it activates a signaling cascade that culminates in many of the functional outcomes attributed to 20-HETE in vitro and in vivo. METHODS AND RESULTS: Using crosslinking analogs, click chemistry, binding assays, and functional assays, we identified G-protein receptor 75 (GPR75), currently an orphan G-protein-coupled receptor (GPCR), as a specific target of 20-HETE. In cultured human endothelial cells, 20-HETE binding to GPR75 stimulated Gαq/11 protein dissociation and increased inositol phosphate accumulation and GPCR-kinase interacting protein-1-GPR75 binding, which further facilitated the c-Src-mediated transactivation of epidermal growth factor receptor. This results in downstream signaling pathways that induce angiotensin-converting enzyme expression and endothelial dysfunction. Knockdown of GPR75 or GPCR-kinase interacting protein-1 prevented 20-HETE-mediated endothelial growth factor receptor phosphorylation and angiotensin-converting enzyme induction. In vascular smooth muscle cells, GPR75-20-HETE pairing is associated with Gαq/11- and GPCR-kinase interacting protein-1-mediated protein kinase C-stimulated phosphorylation of MaxiKß, linking GPR75 activation to 20-HETE-mediated vasoconstriction. GPR75 knockdown in a mouse model of 20-HETE-dependent hypertension prevented blood pressure elevation and 20-HETE-mediated increases in angiotensin-converting enzyme expression, endothelial dysfunction, smooth muscle contractility, and vascular remodeling. CONCLUSIONS: This is the first report to identify a GPCR target for an eicosanoid of this class. The discovery of 20-HETE-GPR75 pairing presented here provides the molecular basis for the signaling and pathophysiological functions mediated by 20-HETE in hypertension and cardiovascular diseases.


Asunto(s)
Endotelio Vascular/fisiología , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensión/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Remodelación Vascular/fisiología , Animales , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacología , Ácidos Hidroxieicosatetraenoicos/toxicidad , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones Transgénicos , Unión Proteica/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos
17.
Prostaglandins Other Lipid Mediat ; 145: 106377, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31586592

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock, the most common form of vasodilatory shock, is a subset of sepsis in which circulatory and cellular/metabolic abnormalities are severe enough to increase mortality. Inflammatory shock constitutes the hallmark of sepsis, but also a final common pathway of any form of severe long-term tissue hypoperfusion. The pathogenesis of inflammatory shock seems to be due to circulating substances released by pathogens (e.g., bacterial endotoxins) and host immuno-inflammatory responses (e.g., changes in the production of histamine, bradykinin, serotonin, nitric oxide [NO], reactive nitrogen and oxygen species, and arachidonic acid [AA]-derived eicosanoids mainly through NO synthase, cyclooxygenase, and cytochrome P450 [CYP] pathways, and proinflammatory cytokine formation). Therefore, refractory hypotension to vasoconstrictors with end-organ hypoperfusion is a life threatening feature of inflammatory shock. This review summarizes the current knowledge regarding the role of eicosanoids derived from CYP pathway of AA in animal models of inflammatory shock syndromes with an emphasis on septic shock in addition to potential therapeutic strategies targeting specific CYP isoforms responsible for proinflammatory/anti-inflammatory mediator production.


Asunto(s)
Ácido Araquidónico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Óxido Nítrico Sintasa/metabolismo , Choque/metabolismo , Animales , Humanos , Inflamación/metabolismo , Inflamación/patología , Choque/patología
18.
Bioorg Med Chem Lett ; 29(19): 126616, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31439380

RESUMEN

19-Hydroxyeicosatetraenoic acid (19-HETE, 1), a metabolically and chemically labile cytochrome P450 eicosanoid, has diverse biological activities including antagonism of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE, 2). A SAR study was conducted to develop robust analogs of 1 with improved in vitro and in vivo efficacy. Analogs were screened in vitro for inhibition of 20-HETE-induced sensitization of rat renal preglomerular microvessels toward phenylephrine and demonstrated to normalize the blood pressure of male Cyp4a14(-/-) mice that display androgen-driven, 20-HETE-dependent hypertension.


Asunto(s)
Antihipertensivos/química , Antihipertensivos/farmacología , Familia 4 del Citocromo P450/fisiología , Hipertensión/tratamiento farmacológico , Glomérulos Renales/efectos de los fármacos , Microvasos/efectos de los fármacos , Animales , Ácidos Hidroxieicosatetraenoicos/toxicidad , Hipertensión/inducido químicamente , Hipertensión/patología , Glomérulos Renales/irrigación sanguínea , Masculino , Ratones , Ratones Noqueados , Fenilefrina/toxicidad , Vasoconstrictores/toxicidad
19.
J Mol Cell Cardiol ; 117: 88-99, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29428638

RESUMEN

Arterial stiffness plays a causal role in development of systolic hypertension. 20-hydroxyeicosatetraeonic acid (20-HETE), a cytochrome P450 (CYP450)-derived arachidonic acid metabolite, is known to be elevated in resistance arteries in hypertensive animal models and loosely associated with obesity in humans. However, the role of 20-HETE in the regulation of large artery remodeling in metabolic syndrome has not been investigated. We hypothesized that elevated 20-HETE in metabolic syndrome increases matrix metalloproteinase 12 (MMP12) activation leading to increased degradation of elastin, increased large artery stiffness and increased systolic blood pressure. 20-HETE production was increased ~7 fold in large, conduit arteries of metabolic syndrome (JCR:LA-cp, JCR) vs. normal Sprague-Dawley (SD) rats. This correlated with increased elastin degradation (~7 fold) and decreased arterial compliance (~75% JCR vs. SD). 20-HETE antagonists blocked elastin degradation in JCR rats concomitant with blocking MMP12 activation. 20-HETE antagonists normalized, and MMP12 inhibition (pharmacological and MMP12-shRNA-Lnv) significantly improved (~50% vs. untreated JCR) large artery compliance in JCR rats. 20-HETE antagonists also decreased systolic (182 ±â€¯3 mmHg JCR, 145 ±â€¯3 mmHg JCR + 20-HETE antagonists) but not diastolic blood pressure in JCR rats. Whereas diastolic pressure was fully angiotensin II (Ang II)-dependent, systolic pressure was only partially Ang II-dependent, and large artery stiffness was Ang II-independent. Thus, 20-HETE-dependent regulation of systolic blood pressure may be a unique feature of metabolic syndrome related to high 20-HETE production in large, conduit arteries, which results in increased large artery stiffness and systolic blood pressure. These findings may have implications for management of systolic hypertension in patients with metabolic syndrome.


Asunto(s)
Presión Sanguínea , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensión/enzimología , Hipertensión/fisiopatología , Metaloproteinasa 12 de la Matriz/metabolismo , Síndrome Metabólico/enzimología , Síndrome Metabólico/fisiopatología , Rigidez Vascular , Animales , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Adaptabilidad , Citocromo P-450 CYP4A/metabolismo , Familia 4 del Citocromo P450/metabolismo , Diástole/efectos de los fármacos , Elastina/metabolismo , Activación Enzimática/efectos de los fármacos , Hipertensión/complicaciones , Losartán/farmacología , Masculino , Síndrome Metabólico/complicaciones , Proteolisis/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Rigidez Vascular/efectos de los fármacos
20.
J Lipid Res ; 59(11): 2047-2062, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30154230

RESUMEN

The initial studies of the metabolism of arachidonic acid (AA) by the cytochrome P450 (P450) hemeproteins sought to: a) elucidate the roles for these enzymes in the metabolism of endogenous pools of the FA, b) identify the P450 isoforms involved in AA epoxidation and ω/ω-1 hydroxylation, and c) explore the biological activities of their metabolites. These early investigations provided a foundation for subsequent efforts to establish the physiological relevance of the AA monooxygenase and its contributions to the pathophysiology of, for example, cancer, diabetes, hypertension, inflammation, nociception, and vascular disease. This retrospective analyzes the history of some of these efforts, with emphasis on genetic studies that identified roles for the murine Cyp4a and Cyp2c genes in renal and vascular physiology and the pathophysiology of hypertension and cancer. Wide-ranging investigations by laboratories worldwide, including the authors, have established a better appreciation of the enzymology, genetics, and physiologic roles for what is now known as the third branch of the AA cascade. Combined with the development of analytical and pharmacological tools, including robust synthetic agonists and antagonists of the major metabolites, we stand at the threshold of novel therapeutic approaches for the treatment of renal injury, pain, hypertension, and heart disease.


Asunto(s)
Ácido Araquidónico/metabolismo , Animales , Citocromo P-450 CYP4A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 4 del Citocromo P450/metabolismo , Eicosanoides/metabolismo , Células Endoteliales/metabolismo , Femenino , Humanos , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda