Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Microb Ecol ; 83(4): 886-898, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34245330

RESUMEN

The intensification of biological processes coping with salt stress became a major issue to mitigate land degradation. The Sine-Saloum Delta in Senegal is characterized by salt-affected soils with vegetation dominated by salt-tolerant grass Sporobolus robustus and shrubs like Prosopis juliflora. Plant experiments in controlled conditions suggested that arbuscular mycorrhizal (AM) fungi might be the key actors of facilitation process observed between S. robustus and P. juliflora, but the AM fungal community determinants are largely unknown. The current field-based study aimed at (1) characterizing the environmental drivers (rhizosphere physico-chemical properties, plant type and season) of the AM fungal community along an environmental gradient and (2) identifying the AM fungal taxa that might explain the S. robustus-mediated benefits to P. juliflora. Glomeraceae predominated in the two plants, but a higher richness was observed for S. robustus. The pH and salinity were the main drivers of AM fungal community associated with the two plants, negatively impacting richness and diversity. However, while a negative impact was also observed on mycorrhizal colonization for S. robustus, P. juliflora showed opposite colonization patterns. Furthermore, no change was observed in terms of AM fungal community dissimilarity between the two plants along the environmental gradient as would be expected according to the stress-gradient and complementary hypotheses when a facilitation process occurs. However, changes in intraspecific diversity of shared AM fungal community between the two plants were observed, highlighting 23 AM fungal OTUs associated with both plants and the highest salinity levels. Consequently, the increase of their abundance and frequency along the environmental gradient might suggest their potential role in the facilitation process that can take place between the two plants. Their use in ecological engineering could also represent promising avenues for improving vegetation restoration in saline Senegalese's lands.


Asunto(s)
Micorrizas , Prosopis , Cebinae , Plantas/microbiología , Poaceae/microbiología , Suelo/química , Microbiología del Suelo
2.
Mycorrhiza ; 30(1): 171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32025891

RESUMEN

The authors of the above-mentioned published article inadvertently omitted Dirk Redecker, Dioumacor Fall and Diaminatou Sanogo from the list of authors. The names and their affiliations presented in this paper.

3.
Microb Ecol ; 69(3): 641-51, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25315832

RESUMEN

Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.


Asunto(s)
Acacia/microbiología , Aciltransferasas/genética , Proteínas Bacterianas/genética , Mesorhizobium/genética , N-Acetilglucosaminiltransferasas/genética , Oxidorreductasas/genética , Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Mesorhizobium/metabolismo , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/metabolismo , Oxidorreductasas/metabolismo , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Senegal , Análisis de Secuencia de ADN , Simbiosis
4.
J Environ Manage ; 95 Suppl: S260-4, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21514716

RESUMEN

The relations between plants and soil biota involve positive and negative feedbacks between soil organisms, their chemical environment, and plants. Then, characterization of microbial community functioning is important to understand these relations. An experiment was conducted in a field system in the north of Senegal for two years (2005 and 2006) in order to investigate the effect of depth and distance from Acacia senegal tree stem on soil microbial biomass and inorganic-N content. Soils were sampled during dry season (April, T(0)) and wet season (August, T(1)) along transects (R(0), foot tree; R(/2,) approximately 0.50 m distance from the stem; and R, approximately 1 m distance from the stem) and at different layers: 0-25 cm, 25-50 cm and 50-75 cm of A. senegal trees rhizosphere. Total microbial biomass and inorganic-N content were negatively correlated to the distance from tree stem and the depth. The highest values of microbial biomass and mineral nitrogen were found at the foot tree (R(0)) and at 0-25 cm layer. Inorganic-N was mostly in nitrate form (NO(3)(-)) during the dry season. In contrast, during the wet season, inorganic-N was dominated by ammoniac form (NH(4)(+)). Soil total microbial biomass and inorganic-N (NH(4)(+)+NO(3)(-)) were negatively correlated. Our results suggest a positive influence of A. senegal rhizosphere on soil microbial biomass and inorganic-N content.


Asunto(s)
Acacia , Nitrógeno/análisis , Microbiología del Suelo , Amoníaco/análisis , Biomasa , Biota , Minerales , Nitratos/análisis , Rizosfera , Estaciones del Año , Senegal , Suelo/química
5.
World J Microbiol Biotechnol ; 28(7): 2567-79, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22806163

RESUMEN

Rhizobial inoculation has a positive impact on plants growth; however, there is little information about its effect on soil microbial communities and their activity in the rhizosphere. It was therefore necessary to test the effect of inoculation of Acacia senegal (L.) Willd. seedlings with selected rhizobia on plant growth, structure and diversity of soil bacterial communities and soil functioning in relation to plant provenance and soil origin. In order to carry out this experiment, three A. senegal seeds provenance from Kenya, Niger, and Senegal were inoculated with selected rhizobial strains. They have been further grown during 4 months in greenhouse conditions in two non-disinfected soils, Dahra and Goudiry coming respectively from arid and semi-arid areas. The principal component analysis (ACP) showed an inoculation effect on plant growth, rhizospheric bacterial diversity and soil functioning. However, the performances of the rhizobial strains varied in relation to the seed provenance and the soil origin. The selected rhizobial strains, the A. senegal provenance and the soil origin have modified the structure and the diversity of soil bacterial communities as measured by principal component analysis/denaturing gradient gel electrophoresis analyses. It is interesting to note that bacterial communities of Dahra soil were highly structured according to A. senegal provenance, whereas they were structured in relation to rhizobial inoculation in Goudiry soil. Besides, the impact of inoculation on soil microbial activities measured by fluorescein diacetate analyses varied in relation to plant provenance and soil origin. Nevertheless, total microbial activity was about two times higher in Goudiry, arid soil than in Dahra, semi-arid soil. Our results suggest that the rhizobial inoculation is a suitable tool for improving plants growth and soil fertility. Yet, the impact is dependent on inoculants, plant provenance and soil origin. It will, therefore, be crucial to identify the appropriate rhizobial strains and plant provenance or species in relation to the soil type.


Asunto(s)
Acacia/microbiología , Rhizobium/fisiología , Electroforesis en Gel de Gradiente Desnaturalizante , Reacción en Cadena de la Polimerasa , Rhizobium/clasificación , Rhizobium/genética , Suelo , Microbiología del Suelo
6.
Syst Appl Microbiol ; 42(2): 232-239, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30384991

RESUMEN

The aim of this study was to survey the abundance and genetic diversity of legume-nodulating rhizobia (LNR) in the rhizosphere of a salt-tolerant grass, Sporobolus robustus Kunth, in the dry and rainy seasons along a salinity gradient, and to test their effectiveness on Prosopis juliflora (SW.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. The results showed a significant decrease in LNR population density and diversity in response to salinity, particularly during the dry season. A phylogenetic analysis of the 16S-23S rRNA ITS region clustered the 232 rhizobium isolates into three genera and 12 distinct representative genotypes: Mesorhizobium (8 genotypes), Ensifer (2 genotypes) and Rhizobium (2 genotypes). Of these genotypes, 2 were only found in the dry season, 4 exclusively in the rainy season and 6 were found in both seasons. Isolates of the Mesorhizobium and Ensifer genera were more abundant than those of Rhizobium, with 55%, 44% and 1% of the total strains, respectively. The abundance of the Mesorhizobium isolates appeared to increase in the dry season, suggesting that they were more adapted to environmental aridity than Ensifer genospecies. Conversely, Ensifer genospecies were more tolerant of high salinity levels than the other genospecies. However, Ensifer genospeciesproved to be the most efficient strains on P. juliflora and V. seyal seedlings. We concluded that S. robustus hosts efficient rhizobium strains in its rhizosphere, suggesting its ability to act as a nurse plant to facilitate seedling recruitment of P. juliflora and V. seyal in saline soils.


Asunto(s)
Fabaceae/microbiología , Filogenia , Poaceae/microbiología , Prosopis/microbiología , Rhizobium/clasificación , Rizosfera , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Nódulos de las Raíces de las Plantas/microbiología , Plantas Tolerantes a la Sal/microbiología , Plantones/microbiología , Senegal , Análisis de Secuencia de ADN , Microbiología del Suelo
7.
Genome Announc ; 5(14)2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28385842

RESUMEN

The genus Ensifer (formerly Sinorhizobium) contains many species able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 6.1-Mb draft genome sequence of Ensifer sp. strain LCM 4579, with a G+C content of 62.4% and 5,613 candidate protein-encoding genes.

8.
Genome Announc ; 5(41)2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-29025952

RESUMEN

The genus Mesorhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the draft genome sequences for three Mesorhizobium strains. The genome sizes of strains LCM 4576, LCM 4577, and ORS3428 were 7.24, 7.02, and 6.55 Mbp, respectively.

9.
Genome Announc ; 5(18)2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28473386

RESUMEN

The genus Rhizobium contains many species that are able to form nitrogen-fixing nodules on plants of the legume family. Here, we report the 5.5-Mb draft genome sequence of the salt-tolerant Rhizobium sp. strain LCM 4573, which has a G+C content of 61.2% and 5,356 candidate protein-encoding genes.

10.
Front Plant Sci ; 7: 1355, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27656192

RESUMEN

Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA), acid phosphatase activities, and gum arabic production by 13-year-old Senegalia senegal (synonym: Acacia senegal) under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July) for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302, and CIRADF 303). Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0-25 cm under uninoculated and inoculated trees. Trees were tapped in November (beginning of dry season) using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA, and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N) content. Gum arabic production was positively correlated to rainfall, soil microbial biomass, and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes.

11.
PLoS One ; 10(2): e0117667, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25658650

RESUMEN

Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.


Asunto(s)
Acacia/microbiología , Variación Genética , Genoma Bacteriano/genética , Mesorhizobium/genética , Acacia/clasificación , Proteínas Bacterianas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Geografía , Concentración de Iones de Hidrógeno , Mesorhizobium/clasificación , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus/métodos , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Tolerancia a la Sal/genética , Senegal , Análisis de Secuencia de ADN , Suelo/química , Microbiología del Suelo , Especificidad de la Especie , Simbiosis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda