Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biotechnol Bioeng ; 119(7): 1949-1964, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35338663

RESUMEN

Klebsiella pneumoniae (K. pneumoniae) is a common bacterium whose drug-resistant can cause surgical failures and incurable infections in hospital patients. Thus, how to reverse or delay the resistance induction has become a great challenge for development antiresistant drug. Recently, the combination of nanomaterial-loaded antibiotics with photothermal therapy showed the efficient antibacteria ability under a low dosage of antibiotics. In this study, a nanocomposite of HMPB NPs with inherent photothermal therapy capability was used to eradicate K. pneumoniae after loading with Ofloxacin, an antibiotic against K. pneumoniae in vitro and in vivo. The nanocomplexes named as Ofloxacin@HMPB@HA NPs showed a higher effect against K. pneumoniae by destroying cell integrity and inducing ATP leakage with the assistance of laser irradiation, compared with sole Ofloxacin@HMPB@HA NPs or laser irradiation. Surgical wound infection assay further demonstrated the efficient killing K. pneumoniae and promoting the formation of new tissues, as well, which was reflected by the rapid healing of surgical wound. In summary, these results indicate the great potential of this combinational tactic based on Ofloxacin@HMPB@HA NPs for preventing the failure caused by K. pneumoniae infection.


Asunto(s)
Infecciones por Klebsiella , Herida Quirúrgica , Antibacterianos/farmacología , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Ofloxacino/farmacología , Ofloxacino/uso terapéutico , Herida Quirúrgica/tratamiento farmacológico
2.
J Nanobiotechnology ; 20(1): 500, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424589

RESUMEN

As one kind of aggressive cancer, triple-negative breast cancer (TNBC) has become one of the major causes of women mortality worldwide. Recently, combinational chemo-PDT therapy based on nanomaterials has been adopted for the treatment of malignant tumor. However, the efficacy of PDT was partly compromised under tumor hypoxia environment due to the lack of sustainable O2 supply. In this study, CeO2-loaded nanoparticles (CeNPs) with peroxidase activity were synthesized to autonomously generate O2 by decomposing H2O2 within tumor region and reprogramming the hypoxia microenvironment as well. Meanwhile, the compound cinobufagin (CS-1) was loaded for inhibiting TNBC growth and metastasis. Moreover, the hybrid membrane camouflage was adopted to improve the biocompatibility and targeting ability of nanocomplexes. In vitro assay demonstrated that decomposition of H2O2 by CeO2 achieved sustainable O2 supply, which accordingly improved the efficacy of PDT. In turn, the generated O2 improved the cytotoxicity and anti-tumor migration effect of CS-1 by downregulating HIF-1α and MMP-9 levels. In vivo assay demonstrated that the combination of CS-1 and PDT significantly inhibited the growth and distance metastasis of tumor in MDA-MB-231 bearing mice. Thus, this chemo-PDT strategy achieved satisfactory therapeutic effects by smartly utilizing the enzyme activity of nanodrugs and special micro-environment of tumor.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Peróxido de Hidrógeno , Línea Celular Tumoral , Microambiente Tumoral
3.
Phytother Res ; 35(7): 3977-3987, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34155704

RESUMEN

In this research, we analyzed the antitumor activity of one new compound Heilaohulignan C (B-6) on the human gastric carcinoma cells. MTT, cell migration, Calcein AM/Propidium Iodide (PI), and flow cytometry in BGC-823 cell line (gastric tumor). Western blot was utilized to distinguish the protein level. Xenografts nude mice were used for in vivo anticancer analysis. H&E staining and laboratory investigation was accomplished for toxicity study. MTT test demonstrated the cytotoxicity of BGC-823 cells, Calcein AM/Propidium Iodide (PI) examine indicated increment dead cells proportion with a high dose of B-6, Flow cytometry (FACS) measure showed that B-6 influenced gastric cancer cells by initiating apoptosis. Western blot analysis confirmed that (B-6) decrease the level of Bcl-2 and increase the level of p53, Bax, and cleaved Caspase-3, this confirms that the B-6 doing the apoptosis through caspase and cytochrome C apoptotic pathways. Also, B-6 particularly decline the tumor volume and tumor size in the xenograft mice. H&E staining additionally supports that B-6 does not have any toxic impact on the normal tissues. This research supports that B-6 have pharmacological activity against gastric cancer, by p53 and mitochondrial dependent apoptotic pathway, and have no toxicity on normal tissues.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Kadsura , Neoplasias Gástricas , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Kadsura/química , Ratones , Ratones Desnudos , Neoplasias Gástricas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Anal Chem ; 92(2): 1988-1996, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31802668

RESUMEN

Glutathione (GSH) levels are closely related to the homeostasis of redox state which directly affects human disease occurrence by regulating cell apoptosis. Hence, real-time monitoring of dynamic changes in intracellular GSH levels is urgently needed for disease early diagnosis and evaluation of therapy efficiency. In this study, an endogenous cysteine (Cys)-assisted detection system based on GSH@AgNCs and reduced graphene oxide (rGO) with high sensitivity and specificity was developed for GSH detection. Compared with GSH, GSH@AgNCs with weaker affinity and bonding force was quite easier to extrude from the rGO surface when competing against GSH, leading to the obvious change in fluorescence signal. This phenomenon was termed as "a crowding out effect". Furthermore, the presence of Cys can improve GSH assay sensitivity by enhancing the quenching efficiency of rGO on the GSH@AgNCs. In vitro assay indicated that the efficiency of fluorescence recovery was positively related with GSH concentration in the range from 0 to 10 mM. In addition, the method was employed for real-time monitoring of the dynamic changes in GSH levels regulated by natural drugs. The imaging results showed that the natural compound 3 (C3) can downregulate GSH levels in HepG2 cells, which was accompanied by reactive oxygen species (ROS) release and apoptosis induction. Finally, the method was used to monitor the change of GSH levels in serum samples with chronic hepatitis B (CHB) infection. The results demonstrated that the occurrence and development of CHB may be positively correlated with GSH levels to some extent. Overall, the above results demonstrate the potential application of this new nanosystem in anticancer natural drug screening and clinical assay regarding GSH levels.


Asunto(s)
Cisteína/química , Medicamentos Herbarios Chinos/farmacología , Colorantes Fluorescentes/química , Glutatión/sangre , Grafito/química , Nanopartículas del Metal/química , Doxorrubicina/farmacología , Etilmaleimida/farmacología , Glutatión/química , Glutatión/efectos de los fármacos , Células Hep G2 , Humanos , Límite de Detección , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Espectrometría de Fluorescencia/métodos
5.
Analyst ; 144(13): 3972-3979, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31140473

RESUMEN

Hepatitis C virus (HCV) is a major cause of chronic liver disease, which affects 2-3% of the world population. Until now, the early detection of HCV has been a great challenge, especially for those who live in developing countries. In this study, we developed a novel and ultrasensitive assay for the detection of HCV RNA based on the reduced graphene oxide nanosheets (rGONS) and hybridization chain reaction (HCR) amplification technique. This detection system contains a pair of single fluorophore-labeled hairpin probes that can freely exist in the solution in the absence of target RNA. The introduction of target RNA can robustly trigger a HCR with the two probes and produce long nanowires containing a double-stranded structure. The weak adsorption to rGONS makes the long nanowires emit a strong fluorescence. Using this enzyme-free amplification strategy, we developed a new method for the HCV RNA assay with a detection limit of 10 fM, which is far more sensitive than the common GO-based fluorescence method. Furthermore, the new method exhibits high selectivity for the discrimination of perfectly complementary and mismatched sequences. Finally, the new method was successfully used as a HCV RNA assay in biological samples with a strong anti-interference capability in complicated environments. In summary, these remarkable characteristics of the new method highlight its potential use in a clinical sample primary screening.


Asunto(s)
Bioensayo/métodos , Técnicas Biosensibles/métodos , Grafito/química , Hepacivirus/aislamiento & purificación , ARN Viral/análisis , Línea Celular Tumoral , ADN/química , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Fluoresceínas/química , Fluorescencia , Colorantes Fluorescentes/química , Grafito/síntesis química , Células HEK293 , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico , Oxidación-Reducción , Prueba de Estudio Conceptual , ARN Viral/genética , Espectrometría de Fluorescencia/métodos
6.
Mikrochim Acta ; 186(6): 335, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31065868

RESUMEN

A new fluorometric method is delineated for the detection of RNase H activity by combining DNAzyme with reduced graphene oxide (rGO). In the absence of RNase H, the fluorescence of FAM-labeled probe is quenched due to the strong adsorption on the rGO. The presence of RNase H can release the active DNAzyme from the DNA-RNA chimeric strand. This triggers the cleavage of the signal probe at the rA site with the help of the cofactor Mg2+. The recycle cleavage can directly result in the amplified signal emitted by the FAM-labeled short fragment. The method allows the activity of RNase H to be detected in a linear range of 0.01 to 5 U·mL-1. The detection limit of 0.018 U·mL-1 is calculated by the principle of three-time standard deviation over the blank signal. Then, RNase H-targeting natural compounds were screened for their inhibitory action. Among the investigated compounds, five were screened as RNase H inhibitors in a concentration-dependent manner, and 4 compounds were identified as activators. Finally, the method was reliably used for discriminating the difference of RNase H activity in human serum. It is found that RNase H activity was upregulated in patients with hepatitis C virus infection. Graphical abstract The schematic presentation of rGO-DNAzyme-based RNase H detection. RNase H triggers the active DNAzyme releasing from the DNA-RNA chimeric strand, which can cleavage probes to FAM-labeled short fragments and make the fluorescence signal cycle amplified.


Asunto(s)
Sondas de ADN/química , ADN Catalítico/química , Grafito/química , Ribonucleasa H/sangre , Espectrometría de Fluorescencia/métodos , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Fluoresceínas/química , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Ribonucleasa H/antagonistas & inhibidores
7.
Anal Chem ; 90(4): 2655-2661, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29368520

RESUMEN

In addition to being an important object in theoretical and experimental studies in enzymology, RNase A also plays an important role in the development of many kinds of diseases by regulating various physiological or pathological processes, including cell growth, proliferation, differentiation, and invasion. Thus, it can be used as a useful biomarker for disease theranostics. Here, a simple, sensitive, and low-cost assay for RNase A was constructed by combining a fluorogenic substrate with reduced graphene oxide (rGO). The method with detection limit of 0.05 ng/mL was first applied for RNase A targeted drug screening, and 14 natural compounds were identified as activators of this enzyme. Then, it was applied to detect the effect of drug treatment and Hepatitis B virus (HBV) infection on RNase A activity. The results indicated that RNase A level in tumor cells was upregulated by G-10 and Chikusetsusaponin V in a concentration-dependent manner, while the average level of RNase A in the HBV infection group was significantly inhibited compared with that in the control group. Furthermore, the concentration-dependent inhibitory effect of heavy metal ions on RNase A was observed using the method and the results indicated that Ba2+, Co2+, Pb2+, As3+, and Cu2+ inhibited RNase A activity with IC50 values of 93.7 µM (Ba2+), 90.9 µM (Co2+), 110.6 µM (Pb2+), 171.5 µM (As3+), and 165.1 µM (Cu2+), respectively. In summary, considering the benefits of rapidity and high sensitivity, the method is practicable for RNase A assay in biosamples and natural compounds screening in vitro and in vivo.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Colorantes Fluorescentes/química , Grafito/química , Ribonucleasa Pancreática/antagonistas & inhibidores , Ribonucleasa Pancreática/análisis , Antivirales/química , Antivirales/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Colorantes Fluorescentes/metabolismo , Grafito/metabolismo , Hepatitis B/tratamiento farmacológico , Hepatitis B/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/metabolismo , Humanos , Juglandaceae/química , Metales Pesados/química , Metales Pesados/farmacología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Ribonucleasa Pancreática/metabolismo , Espectrometría de Fluorescencia
8.
Anal Bioanal Chem ; 410(21): 5219-5228, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29934853

RESUMEN

As an essential phosphate group hydrolase, alkaline phosphatase (ALP), whose level in serum is correlated with bone disease, liver dysfunction, and cancer, could be used as a biomarker for clinical diagnosis and biomedical studies. Hence, developing a convenient and sensitive method for ALP assay has importance in disease diagnosis, drug treatment, and prognosis assessment. In this work, using a hairpin DNA strand as the substrate, we developed an ultrasensitive and simple fluorescence method for quantitative ALP assay based on the binding difference of reduced graphene oxide (rGO) with different DNA strands coupled with λ exonuclease (λ exo) cleavage. Under the optimal conditions, the limit of detection (LOD) of ALP is estimated to be 0.01 U/L with the linear region from 0.5 U/L to 70 U/L. Furthermore, the proposed assay was used to detect ALP in complicated cell-free extracts and evaluate the inhibitory effects of two well-known inhibitors of ALP activity. Finally, the method was used to investigate the effect of natural compounds on ALP activity and five compounds with different inhibitory capability were screened. In summary, we propose that the new method for ALP assay can be applied for therapeutic drug monitoring (TDM) and high-throughput compound screening in combination with multiwell plate technology.


Asunto(s)
Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Productos Biológicos/química , Técnicas Biosensibles , Línea Celular Tumoral , ADN/química , Monitoreo de Drogas/métodos , Fluorescencia , Grafito/química , Humanos , Sensibilidad y Especificidad
9.
Anal Chem ; 89(20): 11014-11020, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28911227

RESUMEN

As a highly conserved damage repair protein, RNase H can specifically hydrolyze RNA in DNA-RNA chimeric strands. DNAzyme, a synthetic single-stranded DNA consisting of binding and catalytic sites, can cleave RNA in the presence of cofactors. In this study, we establish a highly sensitive RNase H assay assisted with DNAzyme's cleavage property. A DNA-RNA chimeric strand, which contains DNAzyme sequences, is used as the hydrolysis substrate of RNase H. The RNase H hydrolysis of the chimeric substrate results in the release of DNAzyme. Subsegment DNAzyme digest, a molecular beacon, causes a "turn-on" fluorescence signal by disrupting its hairpin structure. Furthermore, the fluorescence signal is amplified by cyclic digestion of DNAzyme to the substrate of molecular beacon. Under the optimal conditions, the detection limit of RNase H is 0.01 U/mL, which is superior to those of several alternative approaches. Additionally, the method was further used for RNase H detection in heterogeneous biological samples as well as to investigate the effects of natural compounds on this enzyme. In summary, these results show that the method not only provides a universal platform for monitoring RNase H activity but also shows great potential in biomedical studies and drug screening.


Asunto(s)
ADN Catalítico/metabolismo , ADN de Cadena Simple/metabolismo , Colorantes Fluorescentes/química , ARN/metabolismo , Ribonucleasa H/metabolismo , Espectrometría de Fluorescencia , Línea Celular Tumoral , ADN de Cadena Simple/química , Pruebas de Enzimas , Humanos , ARN/química , Ribonucleasa H/sangre , Especificidad por Sustrato
10.
J Pharm Anal ; 14(5): 100904, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779391

RESUMEN

Due to the non-targeted release and low solubility of anti-gastric cancer agent, apatinib (Apa), a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects. In order to avoid these drawbacks, lipid-film-coated Prussian blue nanoparticles (PB NPs) with hyaluronan (HA) modification was used for Apa loading to improve its solubility and targeting ability. Furthermore, anti-tumor compound of gamabufotalin (CS-6) was selected as a partner of Apa with reducing dosage for combinational gastric therapy. Thus, HA-Apa-Lip@PB-CS-6 NPs were constructed to synchronously transport the two drugs into tumor tissue. In vitro assay indicated that HA-Apa-Lip@PB-CS-6 NPs can synergistically inhibit proliferation and invasion/metastasis of BGC-823 cells via downregulating vascular endothelial growth factor receptor (VEGFR) and matrix metalloproteinase-9 (MMP-9). In vivo assay demonstrated strongest anti-tumor growth and liver metastasis of HA-Apa-Lip@PB-CS-6 NPs administration in BGC-823 cells-bearing mice compared with other groups due to the excellent penetration in tumor tissues and outstanding synergistic effects. In summary, we have successfully developed a new nanocomplexes for synchronous Apa/CS-6 delivery and synergistic gastric cancer (GC) therapy.

11.
J Pharm Anal ; 14(5): 100923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799232

RESUMEN

Over-expression of glutathione S-transferase (GST) can promote Cisplatin resistance in hepatocellular carcinoma (HCC) treatment. Hence, inhibiting GST is an attractive strategy to improve Cisplatin sensitivity in HCC therapy. Although several synthesized GST inhibitors have been developed, the side effects and narrow spectrum for anticancer seriously limit their clinical application. Considering the abundance of natural compounds with anticancer activity, this study developed a rapid fluorescence technique to screen "green" natural GST inhibitors with high specificity. The fluorescence assay demonstrated that schisanlactone B (hereafter abbreviated as C1) isolated from Xue tong significantly down-regulated GST levels in Cisplatin-resistant HCC cells in vitro and in vivo. Importantly, C1 can selectively kill HCC cells from normal liver cells, effectively improving the therapeutic effect of Cisplatin on HCC mice by down-regulating GST expression. Considering the high GST levels in HCC patients, this compound demonstrated the high potential for sensitizing HCC therapy in clinical practice by down-regulating GST levels.

12.
Biomaterials ; 314: 122851, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39366186

RESUMEN

Gamabufotalin (CS-6), a main active compound derived from Chinese medicine Chansu, exhibits a robust inhibitory effect on programmed death-ligand 1 (PD-L1) in triple-negative breast cancer (TNBC) cells. Despite its potential for tumor therapy, the medical application of CS-6 is constrained by its hydrophobic nature, lack of targeting capability, and weak immunogenic cell death (ICD) effect. To address these limitations and improve the therapeutic efficiency of this drug against metastatic TNBC, we designed a new kind of CS-6@CPB-S.lux that integrates carboxy-Prussian blue nanoparticles (CPB NPs), CS-6, and attenuated Salmonella typhimurium (S.lux) for TNBC therapy. In vitro and in vivo results have confirmed that CS-6@CPB NPs were efficiently delivered to neoplastic tissue by the tumor hypoxic chemotaxis property of S.lux, wherein the nanomedicine induced significant tumor cell necroptosis and apoptosis via photothermal therapy (PTT) of CPB NPs and chemotherapy of CS-6, which elicited ICD and inhibited PD-L1 expression, resulting in dendritic cells (DCs) maturation and effector T cells activation to comprehensively eliminate tumors. Additionally, the CS-6@CPB-S.lux + Laser treatment significantly transformed the immunosuppressive tumor microenvironment (TME), enhancing antitumor immunity through promoting the polarization of tumor-associated macrophages into antitumorigenic M1 and reducing Tregs recruitment. Consequently, this comprehensive therapy not only inhibited primary and abscopal tumor progression but also prevented TNBC metastasis, which significantly prolonged survival time in animal models. In summary, these findings indicated an alternative approach for metastatic TNBC therapy.

13.
Biomaterials ; 309: 122608, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38744189

RESUMEN

Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.


Asunto(s)
Quitosano , Nanopartículas del Metal , Naftoquinonas , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Plata , Neoplasias de la Mama Triple Negativas , Naftoquinonas/farmacología , Naftoquinonas/química , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Quitosano/química , Plata/química , Plata/farmacología , Animales , Nanopartículas del Metal/química , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Línea Celular Tumoral , Femenino , Necroptosis/efectos de los fármacos , Humanos , Ratones , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones Endogámicos BALB C , Mucina-1/metabolismo , Sinergismo Farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química
14.
Biomater Sci ; 11(18): 6342-6356, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37581536

RESUMEN

Antibiotic therapy can induce the generation of severe bacterial resistance, further challenging the usability of currently available drugs and treatment options. Therefore, it is essential to develop new strategies to effectively eradicate drug-resistant bacteria. Herein, we have reported a combinational strategy for the eradication of drug-resistant bacteria by using chlorin e6 (Ce6) loaded Prussian blue nanoparticles (PB NPs). This nanocomplex showed strong catalase activity and photodynamic properties. In vitro experiments demonstrated that CPB-Ce6 NPs effectively kill MRSA by generating ROS under laser irradiation. Meanwhile, the nano-enzyme activity of CPB NPs can decompose H2O2 in the bacterial microenvironment to upregulate the O2 level, which in turn alleviates hypoxia in the microenvironment and improves the antibacterial effect of PDT. In vivo results demonstrated that CPB-Ce6 NPs with laser irradiation effectively cleared MRSA and promoted infected wound repair in a diabetic mouse model and normal mice through upregulating VEGF. Moreover, CPB-Ce6 NPs showed excellent biosafety profiles in vitro and in vivo. From our point of view, this PDT based on PB NPs with nano-enzyme activity may provide an effective treatment for infections associated with drug-resistant microbes and tissue repair.


Asunto(s)
Diabetes Mellitus , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Fotoquimioterapia , Porfirinas , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Peróxido de Hidrógeno/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Porfirinas/uso terapéutico , Porfirinas/farmacología , Línea Celular Tumoral
15.
Nanomedicine (Lond) ; 18(21): 1477-1493, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721160

RESUMEN

Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.


Asunto(s)
Lesión Renal Aguda , Nanopartículas , Humanos , Preparaciones Farmacéuticas/metabolismo , Túbulos Renales Proximales/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Mitocondrias , Células Epiteliales , Nanopartículas/uso terapéutico , Riñón
16.
Biomaterials ; 303: 122369, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922746

RESUMEN

Drug-induced immunogenic cell death (ICD) can efficiently inhibit tumor growth and recurrence through the release of tumor-associated antigens which activate both local and systemic immune responses. Pyroptosis has emerged as an effective means for inducing ICD; however, the development of novel pyroptosis inducers to specifically target tumor cells remains a pressing requirement. Herein, we report that Cinobufagin (CS-1), a main ingredient of Chansu, can effectively induce pyroptosis of triple-negative breast cancer (TNBC) cells, making it a potential therapeutic agent for this kind of tumor. However, the application of CS-1 in vivo is extremely limited by the high dosage/long-term usage and non-selectivity caused by systemic toxicity. To address these drawbacks, we developed a new nanomedicine by loading CS-1 into Prussian blue nanoparticles (PB NPs). The nanomedicine can release CS-1 in a photothermal-controlled manner inherited in PB NPs. Furthermore, hybrid membrane (HM) camouflage was adopted to improve the immune escape and tumor-targeting ability of this nanomedicine, as well. In vitro assays demonstrated that the chemo-photothermal combination treatment produced high-level ICD, ultimately fostering the maturation of dendritic cells (DCs). In vivo anti-tumor assessments further indicated that this strategy not only efficiently inhibited primary growth of MDA-MB-231 cells and 4T1 cells-bearing models but also efficiently attenuated distant tumor growth in 4T1 xenograft model. This was mechanistically achieved throuh the promotion of DCs maturation, infiltration of cytotoxic T lymphocyte into the tumor, and the inhibition of Treg cells. In summary, this work provides a novel strategy for efficient TNBC therapy by using nanomaterials-based multimodal nanomedicine through rational design.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Fototerapia , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Biomimética , Muerte Celular Inmunogénica , Nanopartículas/uso terapéutico , Línea Celular Tumoral
17.
J Drug Target ; 31(3): 320-333, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36647791

RESUMEN

Direct use of chemotherapy drugs in the treatment of gastric cancer often leads to systemic side effects and unsatisfied therapeutic efficacy due to the lack of tumour-targeting ability. The excellent properties of nanoparticles make them good tools to provide more options for the targeted delivery of chemotherapeutic drugs. Herein, we developed a novel nanomedicine (GOQD-ICG-CS-6@HM nanoparticles, GIC@HM NPs), which employed graphene oxide quantum dots (GOQDs) to co-load photosensitizer indocyanine green (ICG) and chemotherapeutic drug gamabufotalin (CS-6) as the core and wrapped with the hybrid membrane (erythrocyte membrane and gastric cancer cell membrane, HM) on its surface. This nanomedicine possesses the functions of photothermal therapy and chemotherapy, making it a good choice for the treatment of gastric cancer. The results showed that the bionic-coated hybrid membrane not only improves the biocompatibility of the nanomedicine, and prolong its circulating half-life, but also delivers the drug to the tumour site precisely and improves the efficiency of drug utilisation. In vitro and in vivo studies further showed that GIC@HM NPs exhibited combinational effects on tumour therapy while displaying no obvious side effects on normal tissue. To sum up, the newly developed GIC@HM NPs provide a safer, more efficient, and more precise method for gastric cancer treatment.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Biomimética , Fototerapia/métodos , Verde de Indocianina , Membrana Eritrocítica , Línea Celular Tumoral
18.
J Mater Chem B ; 11(10): 2219-2233, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36790882

RESUMEN

Although combined photodynamic/photothermal therapy (PDT/PTT) has been used for cancer theranostics recently, their therapeutic efficacy has been compromised by the low O2 partial pressure and high concentration of GSH in the tumor microenvironment (TME). Thus, the construction of intelligent TME-responsive nanocomplexes is a powerful strategy for addressing the above issues. In this study, MnO2-coated Prussian blue nanocomplexes (PM NPs) were designed as O2 suppliers and GSH depletion agents to reprogram the TME. Subsequently, tumor-targeting peptide (RGD)-modified erythrocyte membrane vesicles loaded with photosensitizer (Ce6) were used to camouflage PM NPs (PMRCR NPs). Importantly, the prepared PMRCR NPs exhibited excellent photothermal performance with a photothermal conversion efficiency of 44.9%. Moreover, the in vitro PDT/PTT was enhanced, by which the cell viability was reduced to 21.4%, which is lower than the 55.6% (PDT) and 66.7% (PTT) of PMRCR NPs with a single laser treatment. By modeling 4T1 tumor-bearing mice, the combined PDT/PTT of PMRCR NPs greatly inhibited tumor growth, and after 20 days, a tumor inhibition rate of 92.9% was achieved. This work provides a promising strategy by developing TME-reprogrammed multifunctional nanocomplexes to enhance PDT/PTT antitumor efficacy.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Membrana Eritrocítica , Compuestos de Manganeso , Óxidos , Microambiente Tumoral
19.
Acta Pharm Sin B ; 13(11): 4591-4606, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969731

RESUMEN

Although carbon monoxide (CO)-based treatments have demonstrated the high cancer efficacy by promoting mitochondrial damage and core-region penetrating ability, the efficiency was often compromised by protective autophagy (mitophagy). Herein, cannabidiol (CBD) is integrated into biomimetic carbon monoxide nanocomplexes (HMPOC@M) to address this issue by inducing excessive autophagy. The biomimetic membrane not only prevents premature drugs leakage, but also prolongs blood circulation for tumor enrichment. After entering the acidic tumor microenvironment, carbon monoxide (CO) donors are stimulated by hydrogen oxide (H2O2) to disintegrate into CO and Mn2+. The comprehensive effect of CO/Mn2+ and CBD can induce ROS-mediated cell apoptosis. In addition, HMPOC@M-mediated excessive autophagy can promote cancer cell death by increasing autophagic flux via class III PI3K/BECN1 complex activation and blocking autolysosome degradation via LAMP1 downregulation. Furthermore, in vivo experiments showed that HMPOC@M+ laser strongly inhibited tumor growth and attenuated liver and lung metastases by downregulating VEGF and MMP9 proteins. This strategy may highlight the pro-death role of excessive autophagy in TNBC treatment, providing a novel yet versatile avenue to enhance the efficacy of CO treatments. Importantly, this work also indicated the applicability of CBD for triple-negative breast cancer (TNBC) therapy through excessive autophagy.

20.
J Control Release ; 341: 828-843, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942304

RESUMEN

The development of new reagents combining with nanotechnology has become an efficient strategy for improving the immune escaping ability and increasing local drug concentration for natural compounds with low therapy efficiency. In this study, we prepared biomimetic membrane-coated Prussian blue nanoparticles (PB NPs) for the treatment of atherosclerosis, using the function of Artemisinin (ART) and Procyanidins (PC) on the lipid influx and cholesterol efflux of macrophages, two logical steps involved in the plaque progression. In vitro results indicated that the prepared nanocomplexes have significant scavenging effect on ROS and NO, followed by inhibiting NF-κB/NLRP3 pathway, leading to the suppression of lipid influx. Meanwhile, they can notably reduce the uptake and internalization of oxLDL through significantly enhancing AMPK/mTOR/autophagy pathway, accompanied by promoting cholesterol efflux. In vivo study showed that the improved biocompatibility and immune-escape ability of nanocomplexes allowed less drug clearance during the circulation and high drug accumulation in the atherosclerotic plaque of ApoE-/- mice model. More importantly, the ART and PC co-loaded nanocomplexes showed the high efficacy against atherosclerosis of ApoE-/- mice model with both 8-week low dosage treatment or 1-week high dosage treatment. These findings indicated that ART and PC co-loaded nanocomplexes was promising for the targeted treatment of atherosclerosis.


Asunto(s)
Artemisininas , Aterosclerosis , Placa Aterosclerótica , Proantocianidinas , Animales , Artemisininas/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Colesterol/metabolismo , Ratones , Placa Aterosclerótica/tratamiento farmacológico , Proantocianidinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda