RESUMEN
Thiosulfate leaching has been regarded as a promising alternative to cyanidation, but it still faces the challenge of the recovery of low content of gold from high concentrations of thiosulfate solutions. Liquid-liquid extraction is a method to address this issue but is still limited by the use of volatile and toxic organic solvents. To overcome this limitation, this work synthesized some functionalized dicationic ionic liquids (DILs) to serve as extraction solvents for the recovery of the gold-thiosulfate complex, [Au(S2O3)2]3-, from thiosulfate solutions. Experimental results indicated that the DILs showed higher extraction rates toward [Au(S2O3)2]3- compared with their monocationic-based counterparts, likely due to the stronger electrostatic interaction between the dications of the ILs and [Au(S2O3)2]3-. The transfer of [Au(S2O3)2]3- from the water phase to the IL phase was identified as an anion exchange and endothermic process. The rate of extraction was limited by the anion exchange process occurring at the IL-water interface. The extraction ability of ILs highly depended on the type of anion; specifically, the ILs with anions that had strong hydrogen-bonding ability exhibited high extraction ability toward [Au(S2O3)2]3-. Finally, DILs proved effective in the recovery of [Au(S2O3)2]3- from an actual gold leaching solution and exhibited high selectivity toward coexisting ions, indicating their potential as environmentally friendly solvents for gold recovery.
RESUMEN
The recovery of scandium (Sc) from highly acidic industrial effluents is currently hindered by the use of large quantities of flammable and toxic organic solvents. This study developed an extraction system using ionic liquids (ILs) and phenylphosphinic acid (PPAH) as diluents and an extractant, respectively, to selectively recover Sc from the aqueous phase. The effect of IL chemical structure, aqueous pH and temperature on the extraction of Sc was systematically investigated and the findings revealed that ILs with longer alkyl side chains had reduced Sc extraction ability due to the presence of continuous nonpolar domains formed by the self-aggregation of the IL alkyl side chain. The IL/PPAH system maintained high extraction ability toward Sc across a wide temperature range (288 K to 318 K) and the extraction efficiency of Sc could be improved significantly by increasing the aqueous pH. The extraction process involved proton exchange, resulting in the formation of a metal-ligand complex (Sc(PPA)3).
RESUMEN
Rosmarinus officinalis leaves (ROLs) are widely used in the food and cosmetics industries due to their high antioxidant activity and fascinating flavor properties. Carnosic acid (CA) and rosmarinic acid (RA) are regarded as the characteristic antioxidant components of ROLs, and the selective separation of CA and RA remains a significant challenge. In this work, the feasibility of achieving the selective separation of CA and RA from ROLs by solid-phase extraction (SPE) and liquid-liquid extraction (LLE) was studied and compared. The experiments suggested that SPE with CAD-40 macroporous resin as the adsorbent was a good choice for selectively isolating CA from the extracts of ROLs and could produce raw CA with purity levels as high as 76.5%. The LLE with ethyl acetate (EA) as the extraction solvent was more suitable for extracting RA from the diluted extracts of ROLs and could produce raw RA with a purity level of 56.3%. Compared with the reported column chromatography and LLE techniques, the developed SPE-LLE method not only exhibited higher extraction efficiency for CA and RA, but can also produce CA and RA with higher purity.
Asunto(s)
Extractos Vegetales , Rosmarinus , Extractos Vegetales/química , Extracción en Fase Sólida/métodos , Cinamatos/química , Extracción Líquido-Líquido/métodos , Rosmarinus/química , Antioxidantes/análisis , Cromatografía Líquida de Alta Presión , Ácido RosmarínicoRESUMEN
Metal oxide nanoparticles (NPs) have been widely used as catalysts in the chemical industry, but their preparation is usually limited by strict conditions such as high temperature, elevated pressure, and the use of volatile and highly toxic organic solvents. To solve this problem, this work developed an environmentally benign method using green solvents, i.e., natural deep eutectic solvents (NADESs), as a reaction medium to prepare copper oxide (CuO) particles. The experimental results suggested that the synthesized CuO particles were sheet-like mesoporous NPs, and they exhibited excellent catalytic performance towards the photodegradation of rhodamine B (RhB) in the presence of potassium monopersulfate (PMS). The catalytic activity of the synthesized CuO NPs was better than that of the reported metal oxide-based catalysts. Reactive species such as photoexcited holes, superoxide radicals, and singlet oxygen were involved in the RhB degradation. These results indicated that NADESs are good media for the preparation of CuO NPs, and exhibit the potential for application to the preparation of other metal oxides.
RESUMEN
Baicalin which has multiple biological activities is the main active component of the root of Scutellaria baicalensis Georgi (SBG). Although its isolation and purification by adsorption methods have aroused much interest of the scientific community, it suffered from the poor selectivity of the adsorbents. In this work, an environmentally benign method was developed to prepare ionic liquids (ILs) grafted silica by using IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]NTf2) and ethanol as reaction media. The IL 1-propyl-3-methylimidazolium chloride ([C3mim]Cl) grafted silica ([C3mim]+Cl-@SiO2) was used to adsorb and purify baicalin from the root extract of Scutellaria baicalensis Georgi (SBG). Experimental results indicated that the adsorption equilibrium can be quickly achieved (within 10 min). The adsorption behavior of [C3mim]+Cl-@SiO2 for baicalin was in good agreement with Langmuir and Freundlich models and the adsorption was a physisorption process as suggested by Dubinin-Radushkevich model. Compared with commercial resins, [C3mim]+Cl-@SiO2 showed the strongest adsorption ability and highest selectivity. After desorption and crystallization, a purity of baicalin as high as 96.5% could be obtained. These results indicated that the ILs grafted silica materials were promising adsorbents for the adsorption and purification of baicalin and showed huge potential in the purification of other bioactive compounds from natural sources.
Asunto(s)
Flavonoides/química , Líquidos Iónicos/química , Dióxido de Silicio/química , Adsorción , Flavonoides/aislamiento & purificación , Extractos Vegetales/química , Scutellaria baicalensis/químicaRESUMEN
Although graphene oxide (GO) has great potential in the field of immobilized enzyme catalysts, the detailed effects of GO with different morphological structures on immobilized enzyme are not well understood. GOs were prepared from 8000 mesh and nanoscale graphite at different reaction temperatures, and used as carriers to immobilize alpha-amylase by cross-linking method. The properties of GOs were characterized through Atomic force microscope, Fourier-transformed infrared, X-ray photoelectron spectroscopy, Raman and UV-Vis. Furthermore, the dosage of cross-linking agent, cross-linking time, optimum temperature/pH, thermal/pH/storage stability, reusability and kinetic parameters of immobilized enzymes were investigated. The results showed that the loading of alpha-amylase on GOs was 162.3-274.2 mg g-1. The reusability experiments revealed high activity maintenance of immobilized alpha-amylase even after seven reaction cycles. Moreover, the storage stability of immobilized enzyme improved via immobilization in comparison with free one and it maintained over 70% of their initial activity after 20 days storage at 4 °C.
Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Enzimas Inmovilizadas/química , Grafito/química , alfa-Amilasas/químicaRESUMEN
Rheum palmatum L. (R. palmatum L.) is a traditional Chinese herb and food, in which rhein and emodin are the main bioactive components. The extraction of the two compounds from R. palmatum L. is, thus, of great importance. In this work, protic ionic liquids (PILs) were applied in the microwave-assisted extraction (MAE) of rhein and emodin from R. palmatum L., which avoids the toxicity of organic solvents. The results of the present study indicate that PILs possessing higher polarity exhibit higher extraction ability due to their stronger absorption ability for microwave irradiation. Compared with conventional solvents, such as methanol, trichloromethane, and deep eutectic solvents (DESs), the PIL, 1-butyl-3-himidazolium methanesulfonate ([BHim]MeSO3) reported herein is more efficient. The selected extraction conditions of liquid-solid ratio, microwave irradiation time, microwave irradiation power, and PIL concentration were 40 g·g-1, 50 s, 280 W, and 80%, respectively. Under the selected conditions, the extraction yields of rhein and emodin were 7.8 and 4.0 mg·g-1, respectively. These results suggest that PILs are efficient extraction solvents for the separation of active components from natural products.
Asunto(s)
Antraquinonas/aislamiento & purificación , Emodina/aislamiento & purificación , Imidazoles/química , Líquidos Iónicos/química , Extracción Líquido-Líquido/métodos , Mesilatos/química , Rheum/química , Cromatografía Líquida de Alta Presión , Análisis Factorial , Humanos , Microondas , Extractos Vegetales/química , Solventes/químicaRESUMEN
In this work, a two-phase system composed of hydrophobic ionic liquid (IL) and water phases was introduced to prepare copper sulfide (CuS) nanoparticles. It was found that CuS particles generated from the interfaces of carboxyl-functionalized IL and sodium sulfide (Na2S) aqueous solution were prone to aggregate into nanoplates and those produced from the interfaces of carboxyl-functionalized IL and thioacetamide (TAA) aqueous solution tended to aggregate into nanospheres. Both the CuS nanoplates and nanospheres exhibited a good absorption ability for ultraviolet and visible light. Furthermore, the CuS nanoplates and nanospheres showed highly efficient photocatalytic activity in degrading rhodamine B (RhB). Compared with the reported CuS nanostructures, the CuS nanoparticles prepared in this work could degrade RhB under natural sunlight irradiation. Finally, the production of CuS from the interfaces of hydrophobic IL and water phases had the advantages of mild reaction conditions and ease of operation.
Asunto(s)
Cobre/química , Líquidos Iónicos/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal , Agua/químicaRESUMEN
A novel and efficient synthesis of diversely functionalized cyclopentene derivatives through the multicomponent reactions of 1,2-allenic ketones with 4-chloroacetoacetate and malononitrile/cyanoacetate under mild and metal-free conditions is presented. Mechanistically, the formation of title compounds involves a cascade process including nucleophilic substitution, Michael addition and intramolecular aldol type reaction. Interestingly, when 1-phenyl allenic ketones bearing electron-donating groups on the phenyl ring were reacted with 4-chloroacetoacetate and cyanoacetate, methylenecyclo-pentanes, the regioisomer of cyclopentenes, were formed with good selectivity and high efficiency.
RESUMEN
Recently, ionic liquids (ILs) have been regarded as ideal media for non-aqueous bio-catalysis. In this work, the synthesis of warfarin by the lipase-catalyzed Michael addition in IL media and the parameters that affected the warfarin yield were investigated. Experimental results demonstrated that the chemical structures of the ILs were a major factor for influencing the warfarin yield. The ILs containing the NTf2â» anion were suitable reaction media due to the high chemical stability of this anion. The incorporation of the hydroxyl group on the IL cation significantly improved the lipase activity due to the H2O-mimicking property of this group. The lipase activity decreased by increasing the alkyl chain length on the IL cation due to the non-polar domain formation of the IL cation at the active site entrance of lipase. The ILs and lipase could be reused no less than five times without reduction in the warfarin yield.
Asunto(s)
Líquidos Iónicos/química , Catálisis , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/química , Solventes , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
A series of orthophosphates Na3Ln(PO4)2 (Ln = lanthanoids) have for a long time been known as good luminescent materials, yet their crystal structures have not been studied in full detail. In this work, compound Na3La(PO4)2 was prepared using molten salt (flux) method and for the first time was structurally determined on X-ray single-crystal diffraction data. Interestingly, it crystallizes in the four-dimensional incommensurately modulated structure with orthorhombic superspace group Pca21(0ß0)000 and modulation wave vector q = 0.387b*. Furthermore, to evaluate the potentiality of Na3La(PO4)2 to be used as a luminescent host material, 5 mol % Eu3+, Tb3+, and Dy3+ doped phosphors were prepared, respectively. The excitation spectra, emission spectra, decay time, quantum efficiency, and the color purity of prepared phosphors, Na3La0.95Eu0.05(PO4)2, Na3La0.95Tb0.05(PO4)2, and Na3La0.95Dy0.05(PO4)2, were studied.
RESUMEN
Thiosulfate has been considered as a more environmentally-friendly alternative to cyanide salts for the extraction of gold from gold ores and the development of affordable, green and efficient adsorbents for the isolation of gold-thiosulfate complex (Au(S2O3)23-) from the leaching solution remains a significant challenge. To address this issue, chitosan, a natural macromolecule, was selected as a carrier and chemically modified with ionic liquids. The ionic liquids modified chitosan showed greater adsorption capacity towards Au(S2O3)23- compared with pristine chitosan. The adsorption of Au(S2O3)23- on ionic liquid modified chitosan followed Freundlich isotherm and pseudo-second order kinetic models, involving an anion-exchange mechanism with liquid film diffusion as the rate-limiting step. The chitosan modified with butylimidazolium-based ionic liquid had an adsorption capacity of 5.0 mg g-1 for gold (10 mg L-1 of gold, pH 6, 2 g L-1 of adsorbent dosage), outperforming other reported adsorbents. The ionic liquid modified chitosan showed a high adsorption efficiency of up to 96.7 % for Au(S2O3)23- in an actual thiosulfate leaching solution with a desorption efficiency of 98.4 %, suggesting that the ionic liquid modified chitosan has the potential to be a eco-friendly, biocompatible and effective adsorbent for the recovery of Au(S2O3)23-.
Asunto(s)
Quitosano , Oro , Líquidos Iónicos , Quitosano/química , Líquidos Iónicos/química , Adsorción , Oro/química , Cinética , Concentración de Iones de Hidrógeno , Tecnología Química Verde , Tiosulfatos/químicaRESUMEN
Peroxynitrite (ONOO-) is a highly reactive oxygen species that plays a critical role in many physiological and pathological processes of cell function. This study aimed to propose a ratiometric fluorescent probe BDHCA derived from coumarin for determining the ONOO- level. ONOO- could specifically induce oxidative cleavage of the conjugated C = C double bond in probe BDHCA, providing a fluorescent ratiometric output. The response of probe BDHCA to ONOO- was selective, fast, and highly sensitive, with a detection limit of 50.3 nM. Biological imaging experiments suggested that probe BDHCA could be used to image ONOO- in living RAW264.7 cells and zebrafish.
Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Ratones , Animales , Colorantes Fluorescentes/química , Ácido Peroxinitroso , Estrés Oxidativo , Células RAW 264.7RESUMEN
Rosmarinus officinalis leaves (ROLs) are widely used as a popular culinary spice for flavoring food, in which carnosic acid (CA) and rosmarinic acid (RA) are the main active components. The extraction of CA and RA is limited by lowextraction efficiency and extraction rate. In this work, a microwave-assisted extraction (MAE) method using biodegradable, low-toxic and nonflammable solvents polyethylene glycols (PEGs) as extraction solvents was developed for theextraction of CA and RA from ROLs. Experimental results suggest that PEG-400 was a better choice compared with PEG-200, and the optimal extraction conditions were as follows: 45% of PEG-400, 4.3% of phosphoric acid, 20 s of microwave irradiation time at 280 W of microwave irradiation power, and a 10 mg mL-1 solid-liquid ratio, respectively. The tissue structures of ROLs could be effectively disrupted by PEG-based MAE, leading to high CA and RA extraction efficiencies. The PEG-400 extract exhibited stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability compared with butylated hydroxytoluene (BHT). Finally, compared with heating reflux extraction, ultrasound-assisted extraction, maceration, and MAE using ionic liquid and ethanol as extraction solvents, the developed PEG-400 based MAE exhibited the highest extraction ability and fastest extraction rate for CA and RA. These findings suggest that MAE using PEGs as extraction solvents is a promising method for the separation of bioactive compounds from natural plants.
RESUMEN
Methyl glycolate (MG) is an important biodegradable PGA plastic monomer. Herein, a green approach to synthesize MG by methanolysis of glucose is proposed, in which the subcritical methanol and phenol/quinone redox system were combined to promote the reversible C-C cleavage and oxidation during the cascade reaction of glucose to MG.
Asunto(s)
Glucosa , Metanol , Glicolatos , Fenol , FenolesRESUMEN
The high toxicity of phosgene poses potential threats to public health and safety. In this work, a novel fluorescent probe was designed to detect phosgene using hydroxyl and pyrazole moieties as the recognition sites. The response to phosgene with probe 1 was fast (less than 30 s), highly selective and sensitive with the limit of detection being 4.78 nM in solution. Furthermore, probe 1 was employed to conveniently fabricate paper test strips for efficiently detecting phosgene gas. The limit of detection was obtained as 0.014 ppm by using a smartphone RGB app, revealing that probe 1 has good prospects for sensitively detecting phosgene gas.
Asunto(s)
Fosgeno , Espectrometría de Fluorescencia , Cumarinas , Colorantes FluorescentesRESUMEN
The microenvironments of biological systems are associated with the pathology of organisms. This study, aimed to construct a hemicyanine-based probe (1), which can respond to mitochondrial viscosity and hydrazine (N2H4), for imaging application in living cells and zebrafish. The probe showed no fluorescence due to the intramolecular rotation in the solution; however, it exhibited a strong emission at 730 nm when the molecules were restricted to a high-viscosity environment. The addition of N2H4 caused an elimination reaction of the N-substituted group in the pyridinium part and further broke the CC bond to produce a highly fluorescent hydrazone. Also, the probe could selectively and quantitatively detect N2H4 via the fluorescence enhancement at 510 nm in a concentration range of 0 µM-140µM, with the limit of detection being 0.0485 µM. This probe may be used to study diseases related to N2H4 and viscosity changes in biological systems. Furthermore, the analysis methods based on probe 1 for N2H4 detection in soil, water, and air samples were successfully established.
Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Humanos , Animales , Colorantes Fluorescentes/química , Viscosidad , Agua/química , Hidrazinas/análisis , Células HeLa , Espectrometría de Fluorescencia/métodosRESUMEN
Hypochlorite (ClO-) is a ROS that plays a crucial role in the immune system in the body. As the largest organelle in the cell, the endoplasmic reticulum (ER) manages various life activities. Thus, a simple hydrazone-based probe was designed, which provided a fast turn-on fluorescent response toward ClO-. With a terminal p-toluenesulfonamide group as the endoplasmic reticulum (ER)-specific site, probe 1 was mainly accumulated at ER of living cells, and could be used for imaging endogenous and exogenous HClO in cells and zebrafishes.
Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Animales , Pez Cebra , Benzopiranos , Imagen Óptica , Retículo EndoplásmicoRESUMEN
As a significant kind of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in many physiological and pathological processes. This study aimed to synthesize a novel dihydro-benzo[4,5]imidazo[1,2-c]quinazoline-based probe 1 for detecting ONOO-. In 99.5% H2O solution, probe 1 displayed a distinct aggregation-induced ratiometric emission (AIRE), and would selectively respond toward ONOO-via a ratiometric fluorescent signal, along with a short response time (<30 s) and ultra-sensitivity (LOD = 17.6 nM). Moreover, the probe was applied for monitoring the concentration fluctuations of ONOO- in HeLa cells and zebrafish.
Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Humanos , Animales , Ácido Peroxinitroso , Células HeLa , Especies Reactivas de OxígenoRESUMEN
An inorganic-organic hybrid probe MP-ZIF-90 was synthesized via a simple condensation reaction based on the free CHO groups of zeolitic imidazolate framework-90 (ZIF-90) and 4-methyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)pyridinium bromide (MP). This probe exhibited intense green emission, which was selectively quenched by the addition of ClO- anions. The response of probe MP-ZIF-90 toward ClO- was rapid (within 20 s) and sensitive, with a limit of detection (LOD) of 0.612 µM. Importantly, the utilization of the probe in the fluorescence imaging of ClO- anions in the mitochondria of living cells and zebrafish was demonstrated.