Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Org Chem ; 88(20): 14540-14549, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37773964

RESUMEN

Density functional theory (DFT) calculations have been employed to investigate the mechanism of carboamination and diamination of unactivated alkenes mediated by Pd(IV) intermediates. Both reactions share a common Pd(IV) intermediate, serving as the starting point for either the carboamination or the diamination pathway. The formation of this Pd(IV) intermediate encompasses a transition state that substantially impacts the turnover frequency (TOF) of catalytic cycles, with an apparent activation free-energy barrier of 26.1 kcal mol-1. Carboamination of unactivated alkenes proceeds through the coordination of a toluene molecule, C-H activation, inner reductive elimination, and the separation of the carboamination product from this intermediate, while diamination of unactivated alkenes involves the formation of the ion nucleophile, SN2 attack, and the separation of the diamination product. A comparison of the free-energy profiles for carboamination and diamination of unactivated alkenes can elucidate the origin of the chemoselectivity, and Bader's atoms in molecules (AIM) wave function analyses have been performed to analyze the contributions of the outer C-N bonding in the diamination process.

2.
Phys Chem Chem Phys ; 25(29): 19422-19426, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37455579

RESUMEN

DFT calculations of reaction mechanisms in solution have always been a hot topic, especially for transition-metal-catalyzed reactions, in which the traditional DFT-D3 method has been extensively employed. The overestimation of the dispersion from the traditional DFT-D3 method leads to a quite low activation free-energy barrier, so it is worth finding a proper way to deal with the dispersion for solution systems. The solvent-solute dispersion is also important for solution systems, and thus it should be calculated together with the solute dispersion. The newly generated solute-solute dispersion energy should be shared equally with the newly formed cavity between two interacting species; therefore, only half of the solute-solute and solvent-solute dispersion terms belong to the solute molecule. The detailed treatment of dispersion correction for solution systems has been fully addressed, and this method has been confirmed with the examples of ligand exchange reactions and catalytic reactions.

3.
Phys Chem Chem Phys ; 25(2): 913-931, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36519338

RESUMEN

DFT calculations of reaction mechanisms in solution have always been a hot topic, especially for transition-metal-catalyzed reactions. The calculation of solvation energy is performed using either the polarizable continuum model (PCM) or the universal solvation model SMD. The PCM calculation is very sensitive to the choice of atomic radii to form a cavity, where the self-consistent isodensity PCM (SCI-PCM) has been recognized as the best choice and our IDSCRF radii can provide a similar cavity. Moving from a gas-phase case to a solution case, dispersion energy and entropy should be carefully treated. The solvent-solute dispersion is also important in solution systems, and it should be calculated together with the solute dispersion. Only half of the solvent-solute dispersion energy from the PCM calculation belongs to the solute molecules to maintain a thermal equilibrium between a solute molecule and its cavity, similar to the treatment of electrostatic energy. Relative solute dispersion energy should also be shared equally with the newly formed cavity. The entropy change from a gas phase to a liquid phase is quite large, but the modern quantum chemistry programs can only calculate the gas-phase translational entropy based on the idea-gas equation. In this review, we will provide an operable method to calculate the solution translational entropy, which has been coded in our THERMO program.

4.
Phys Chem Chem Phys ; 22(23): 13084-13091, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32490449

RESUMEN

We report herein the first detailed study of the mechanism of redox reactions occurring during the gas-phase dissociative electron transfer of prototypical ternary [CuII(dien)M]˙2+ complexes (M, peptide). The two final products are (i) the oxidized non-zwitterionic π-centered [M]˙+ species with both the charge and spin densities delocalized over the indole ring of the tryptophan residue and with a C-terminal COOH group intact, and (ii) the complementary ion [CuI(dien)]+. Infrared multiple photon dissociation (IRMPD) action spectroscopy and low-energy collision-induced dissociation (CID) experiments, in conjunction with density functional theory (DFT) calculations, revealed the structural details of the mass-isolated precursor and product cations. Our experimental and theoretical results indicate that the doubly positively charged precursor [CuII(dien)M]˙2+ features electrostatic coordination through the anionic carboxylate end of the zwitterionic M moiety. An additional interaction exists between the indole ring of the tryptophan residue and one of the primary amino groups of the dien ligand; the DFT calculations provided the structures of the precursor ion, intermediates, and products, and enabled us to keep track of the locations of the charge and unpaired electron. The dissociative one-electron transfer reaction is initiated by a gradual transition of the M tripeptide from the zwitterionic form in [CuII(dien)M]˙2+ to the non-zwitterionic M intermediate, through a cascade of conformational changes and proton transfers. In the next step, the highest energy intermediate is formed; here, the copper center is 5-coordinate with coordination from both the carboxylic acid group and the indole ring. A subsequent switch back to 4-coordination to an intermediate IM1, where attachment to GGW occurs through the indole ring only, creates the structure that ultimately undergoes dissociation.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Péptidos/química , Triptófano/química , Teoría Funcional de la Densidad , Transporte de Electrón , Estructura Molecular , Fotones , Espectrofotometría Infrarroja , Triptófano/análogos & derivados
5.
Inorg Chem ; 58(7): 4626-4633, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869518

RESUMEN

We first report single crystal X-ray analysis of ground crystals of mechanochromic luminescence (MCL) that shows single crystal-to-single crystal transformation (SCSCT). Single crystals of [ZnL2] (1-SG, HL = 2-[[[4-(2-benzoxazolyl)phenyl]imino]-methyl]-5-(diethylamino)-phenol) were obtained upon slight grinding of single crystals of [ZnL2]·0.5CH3OH (1), both of which were characterized by single crystal X-ray diffraction. Crystals of 1 showed emission centered at 647 nm (red color), while crystals of 1-SG showed emission band at 624 nm (orange-red color) under UV light, indicating MCL property of the Zn(II) complex. Reversible MCL property with emission color change between red and yellow for 1 was observed upon high grinding and recrystallization. Single crystal X-ray analysis suggested that it is due to the alteration of molecular conformation of ligands in ZnL2 instead of weak intermolecular interaction that 1 exhibits MCL. Investigation of the control Zn(II) complexes (2-4) indicated that flexible substituents and rotated aromatic rings are desirable to generate the MCL-active complexes. In addition, 1 was highly fluorescent in THF solution, but its fluorescence quenched upon addition of water. DFT calculations suggested that this is due to the formation of the excited hydrated ZnL2 species via Zn-O coordination bond, which results in electron-driven proton transfer (EDPT). Aggregates formed as water fraction ( fw) in THF/H2O (v/v) reached 70%, and fluorescence emission was enhanced. This phenomenon continued until fw was 90%, indicating aggregation-induced emission (AIE) property. The mechanism of AIE of ZnL2 in THF/H2O is the restriction of intramolecular rotation (RIR).

6.
J Org Chem ; 83(6): 3142-3148, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29485873

RESUMEN

The reaction mechanisms of Pd(OAc)2-catalyzed dehydrogenative alkylation of 2-phenylpyridine with oxirane were investigated using DFT calculations. The most plausible reaction pathway was confirmed as a PdII/IV/II catalytic cycle consisting of four processes: C-H activation, ring-opening oxidative addition of oxirane, reductive elimination, and recovery of the catalyst. According to the B2PLYP/DGDZVP computational data, the oxidative addition of oxirane for converting PdII to PdIV was assigned to be the rate-determining step with a free-energy barrier of 28.1 kcal·mol-1. For comparison, we also studied the alternative PdII-only pathway without a change of oxidation state and found that it was hindered kinetically by a high free-energy barrier of 75.1 kcal·mol-1 occurring for the ring-opening migratory insertion of oxirane. In addition, the small-ring strain of oxirane should be responsible for the feasible C-O bond-cleavage and subsequent PdII → PdIV conversion, because the designed four-, five-, and six-membered-ring reagents did not display such an oxidative addition reactivity. Lastly, an extended reactivity order among oxirane, PhI, PhBr, and PhCl toward oxidative addition onto PdII to form PdIV was proposed in this article based on the computed kinetic parameters.

7.
Inorg Chem ; 56(2): 984-990, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28054772

RESUMEN

2-(Trityliminomethyl)-quinolin-8-ol (HL) and its Zn(II) complex were synthesized and characterized by single-crystal X-ray diffraction. HL is an unsymmetrical molecule and coordinated with Zn(II) ion to form ZnL2 in the antiparallel-mode arrangement via Zn-O (hydroxyl group) and Zn-N (quinoline ring) of HL. A high degree of ZnL2 molecules ordering stacking is formed by the coordination bonds and intermolecular π-π interactions, in which head-to-tail arrangement (J-mode stacking) for L- is found. HL is nonfluorescent and ZnL2 is weakly fluorescent in THF. The fluorescence emission of ZnL2 enhances in THF/H2O as H2O% (volume %) is above 60% and aggregates particles with several hundred nanometers are formed, which is confirmed by DLS data and TEM images. The J-aggregates stacking for L- in ZnL2 results in aggregation-induced emission enhancement (AIEE) for ZnL2 in THF/H2O. Theoretical computations based on B3LYP/6-31G(d, p) and TD-B3LYP/6-31G(d, p) methods were carried out. ESIPT is the supposed mechanism for fluorescent silence of HL, and fluorescence emission of ZnL2 is attributed to the restriction of ESIPT process. The oscillator strength of ZnL2 increases from 0.017 for monomer to 0.032 for trimer. It indicates that a high degree of ZnL2 molecules ordering stacking in THF/H2O is of benefit to fluorescence enhancement. HL is an ESIPT-coupled AIEE chemosensor for Zn(II) with high selectivity and sensitivity in aqueous medium. HL can efficiently detect intracellular Zn(II) ions because of ESIPT-coupled AIEE property of ZnL2 in mixed solvent.

8.
Anal Chem ; 88(15): 7660-6, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27376407

RESUMEN

Carbon nanodots (C-dots) are recently well examined due to the emissions with color-tuning and nonblinking properties, while more studies are still needed for the appropriate understanding and application of distinct emissions. In this work, we found the emission of chemiluminescence (CL) by introducing low-temperature plasma (LTP) into C-dots solutions without any reagent added, whose intensity was affected by the presence of different metal ions. Based on both experimental data and theoretical calculations, we found with the ozonation by ozone from LTP, excited oxidized-C-dots would be generated with the addition of ozone onto the conjugated double bonds of C-dots, and these excited species could directly initiate strong CL combining with the deactivation of excited species to the ground state. Significantly, the cross-reactive CL signals were obtained from different kinds of C-dots with the presence of different metal ions. Therefore, a new sensor array (electronic tongue) composed of five different C-dots was designed for fast discrimination of metal ions, which achieved the accurate discrimination of 13 kinds of metal ions in pure water and real samples. It exhibited good reproducibility and sensitivity, which can be used for the quantitative analysis of metal ions such as showing a linear range from 4 × 10(-7) to 6 × 10(-5) mol·L(-1) (R(2) > 0.99) for Fe(3+) with a detection limit of 2.5 × 10(-7) mol·L(-1). This work not only provides a novel finding of CL from C-dots revealing explicit relationship between structures and CL properties, but also realizes the fast discrimination of metal ions, showing potentials in environmental monitoring and quality identifications.

9.
Chemistry ; 22(43): 15396-15403, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27620274

RESUMEN

Chemoselectivities of five experimentally realised CpRuCl(PPh3 )2 /MeI-catalysed couplings of 7-azabenzo-norbornadienes with selected alkynes were successfully resolved from multiple reaction pathway models. Density functional theory calculations showed the following mechanistic succession to be energetically plausible: (1) CpRuI catalyst activation; (2) formation of crucial metallacyclopentene intermediate; (3) cyclobutene product (P2) elimination (ΔGRel(RDS) ≈11.9-17.6 kcal mol-1 ). Alternative formation of dihydrobenzoindole products (P1) by isomerisation to azametalla-cyclohexene followed by subsequent CpRuI release was much less favourable (ΔGRel(RDS) ≈26.5-29.8 kcal mol-1 ). Emergent stereoselectivities were in close agreement with experimental results for reactions a, b, e. Consequent investigations employing dispersion corrections similarly support the empirical findings of P1 dominating in reactions c and d through P2→P1 product transformations as being probable (ΔG≈25.3-30.1 kcal mol-1 ).

10.
J Org Chem ; 81(17): 7400-10, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27463782

RESUMEN

A comprehensive DFT investigation has been performed for a series of the Pd(OAc)2-catalyzed C-H activations, updating and extending the understanding of directing group effect. In the beginning, the directed and undirected C-H activation mechanisms, based on 10 model reactions, have been discussed comparatively, which disclosed that directing group can exert a thermodynamic driving force, not necessarily a kinetic promotion, on the C-H activation process. Formation of the open palladation species via the undirected pathway is thermodynamically unspontaneous (ΔG = 4-9 kcal/mol), in sharp contrast to that of the cyclopalladation species via the directed pathway (ΔG < 0). Further calculations revealed that the free-energy barriers of proton-transfer are in fact not so high on the undirected pathway (17-24 kcal/mol), while mediation of some O-center groups in the directed pathway would increase the free-energy barriers of proton-transfer. For pyridine N-oxide systems, the undirected mechanism was estimated to be more plausible than the 4-member-directed one both thermodynamically and kinetically. In addition, the uncommon 7-membered cyclopalladation has been tentatively explored using two current examples, predicting that electron-rich directing groups can help to stabilize the 7-membered palladacycles formed.

11.
Org Biomol Chem ; 14(19): 4426-35, 2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27088885

RESUMEN

Copper-complex catalyzed coupling reactions have been widely applied in the production of many important organic moieties from a synthetic perspective. In this work, a series of density functional theory (DFT) calculations, employing the B3LYP + IDSCRF/DZVP method, have been performed for a typical CuCl-catalyzed C-O cross-coupling reaction. The novel reaction mechanism was reported as four successive processes: oxidative radical generation (ORG) or oxidative addition (OA), hydrogen abstraction (HA), C-H activation/reductive elimination, and separation of product and recycling of catalyst (SP & RC). Our calculations provided a deep understanding on the dissimilar chemical activities associated with varying the oxidants used; detailed energy profile analyses suggested that the first oxidation process could proceed via either of the two competing channels (ORG and OA mechanisms) which is the basis to explain the different experimental yields. In addition, our molecular modelling gave theoretical evidence that Cu(ii) → Cu(i) reduction by solvent DMF (and a water molecule) might serve as a preliminary step to produce some more active Cu(i) species that could subsequently be oxidized into Cu(iii) favorably. In contrast, the Cu(ii) → Cu(iii) direct pathway was estimated to be prohibited from thermodynamics. All the calculation results in this work are parallel with the experimental observations.

12.
Phys Chem Chem Phys ; 18(44): 30815-30823, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27801446

RESUMEN

Several popular density functional theory (DFT) methods have been employed to characterize a series of 1,3-dipolar cycloaddition reactions, including the exploration of reaction mechanisms and the calculations of kinetic parameters. Both the gas- and solution-phase translational entropy models have been used to calculate the activation entropies, and the results obtained from the latter method are quite close to the experimental measurements. For some of the reactions studied, e.g., a1 + b9, a1 + b10, a5 + b9 and a12 + b5, the explicit + implicit solvation model, namely, a cluster-continuum type model, should be employed to account for the specific solvent-solute interactions. The quasi rigid-rotor-harmonic-oscillator (qRRHO) small frequency vibrational entropy correction, in conjunction with the conformational entropy correction, could further improve the calculated activation entropy data. The comparison between calculation data with experimental measurements, using 23 activation entropies and 160 reaction rate constants as test benchmark, demonstrated that our present strategy could calibrate the root-mean-square-deviation (RMSD) of activation entropies to be 1.8 cal mol-1 K-1 and that of Gibbs free energy barriers to be 1.8 kcal mol-1.

13.
Phys Chem Chem Phys ; 18(8): 6182-90, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26847838

RESUMEN

The kinetic parameters, such as activation entropy, activation enthalpy, activation free-energy, and reaction rate constant, for a series of nucleophilic substitution (SN) reactions in solution, are investigated using both a solution-phase translational entropy model and an ideal gas-phase translational entropy model. The results obtained from the solution translational entropy model are in excellent agreement with the experimental values, while the overestimation of activation free-energy from the ideal gas-phase translational entropy model is as large as 6.9 kcal mol(-1). For some of the reactions studied, such as and in methanol, and and in aqueous solution, the explicit + implicit model, namely, a cluster-continuum type model, should be employed to account for the strong solvent-solute interactions. In addition, the explicit + implicit models have also been applied to the DMSO-H2O mixtures, which would open up a door to investigate the reactions in a mixed solvent using density functional theory (DFT) methods.

14.
Chemphyschem ; 16(17): 3711-8, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26359578

RESUMEN

Several density functional theory (DFT) methods, such as CAM-B3LYP, M06, ωB97x, and ωB97xD, are used to characterize a range of ene reactions. The Gibbs free energy, activation enthalpy, and entropy are calculated with both the gas- and solution-phase translational entropy; the results obtained from the solution-phase translational entropies are quite close to the experimental measurements, whereas the gas-phase translational entropies do not perform well. For ene reactions between the enophile propanedioic acid (2-oxo-1,3-dimethyl ester) and π donors, the two-solvent-involved explicit+implicit model can be employed to obtain accurate activation entropies and free-energy barriers, because the interaction between the carbonyl oxygen atom and the solvent in the transition state is strengthened with the formation of C-C and O-H bonds. In contrast, an implicit solvent model is adequate to calculate activation entropies and free-energy barriers for the corresponding reactions of the enophile 4-phenyl-1,2,4-triazoline-3,5-dione.

15.
J Org Chem ; 80(18): 9108-17, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26270257

RESUMEN

Competing reaction mechanisms, substituent effects, and regioselectivities of Ni(PPh3)2-catalyzed [2 + 2 + 2] carboryne-alkyne cycloadditions were characterized by density functional theory using the real chemical systems and solvent effects considered. A putative mechanism involving the following steps was characterized: (1) exothermic carboryne-catalyst complexation and nucleophilic attack by the first alkyne; (2) insertion of the second alkyne, the rate-determining step (RDS) in all four reactions studied; (3) isomerization of reactant-bound complexes; and (4) product elimination and catalyst regeneration. The RDS in three reactions is mediated by free energy barriers of 27.2, 31.1, and 36.6 kcal·mol(-1), representative of the corresponding experimental yields of 67, 54, and 33%, respectively. A fourth reaction with 0% experimental yield showed representative RDS free energy barriers of 60.4 kcal·mol(-1), which are difficult to surmount even at 90 °C. Alternative pathways leading to differing isomers were similarly characterized and successfully reproduced experimentally determined product regioselectivities. Kinetic data derived from free energy barriers are in quantitative agreement (< ± 0.75-3.0 kcal·mol(-1)) of the experimental times, affirming the theoretical results as representative of the real chemical transformations. Complementary determinations show the use of truncated models (Ni(PMe3)2, Ni(PH3)2) causes the RDS to vary from step 2 (alkyne insertion) to step 1 (alkyne attack), highlighting the need to employ real chemical systems in modeling these reactions.

16.
Org Biomol Chem ; 13(29): 7950-60, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26108375

RESUMEN

Due to its green-chemistry advantages, the dehydrogenative Heck reaction (DHR) has experienced enormous growth over the past few decades. In this work, two competing reaction channels were comparatively studied for the Pd(OAc)2-catalyzed DHRs of arenes with alkenes, referred to herein as the arene activation mechanism and the alkene activation mechanism, respectively, which mainly differ in the involvement of the reactants in the C-H activation step. Our calculations reveal that the commonly accepted arene activation mechanism is plausible for the desired arene-alkene cross-coupling; in contrast, the alternative alkene activation mechanism is kinetically inaccessible for the desired cross-coupling, but it is feasible for the homo-coupling of alkenes. The nature of directing groups on reactants could mainly determine the dominance of the two competing reaction routes, and therefore, influence the experimental yields. A wide range of directing groups experimentally used are examined by the density functional theory (DFT) method in this work, providing theoretical guidance for screening compatible reactants.

17.
J Am Chem Soc ; 136(49): 17249-61, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25457800

RESUMEN

The synthesis, structure, and reactivity of an actinide metallacyclopropene were comprehensively studied. The reduction of [η(5)-1,2,4-(Me3C)3C5H2]2ThCl2 (1) with potassium graphite (KC8) in the presence of diphenylacetylene (PhC≡CPh) yields the first stable actinide metallacyclopropene [η(5)-1,2,4-(Me3C)3C5H2]2Th(η(2)-C2Ph2) (2). The magnetic susceptibility data show that 2 is indeed a diamagnetic Th(IV) complex, and density functional theory (DFT) studies suggest that the 5f orbitals contribute to the bonding of the metallacyclopropene Th-(η(2)-C═C) moiety. Complex 2 shows no reactivity toward alkynes, but it reacts with a variety of heterounsaturated molecules such as aldehyde, ketone, carbodiimide, nitrile, organic azide, and diazoalkane derivatives. DFT studies complement the experimental observations and provide additional insights. Furthermore, a comparison between Th and group 4 metals reveals that Th(4+) shows unique reactivity patterns.

18.
Inorg Chem ; 53(6): 3012-21, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24571390

RESUMEN

This paper reports a fluorescence chemosensor, N-(benzimidazol-2-yl)salicylaldimine (H2L), for Zn(II) and Al(III) ions. H2L has high selectivity for Al(III) in dimethyl sulfoxide (DMSO) and for Zn(II) in N,N-dimethylformamide (DMF). In methanol, Zn(II) and Al(III) could also be distinguished by H2L with different excitation wavelengths. The fluorescent species [Zn(HL)(H2O)(CH3OH)](+), [Zn(HL)(H2O)(DMF)](+), [Al(HL)2(OH)(H2O)], and [Al(HL)(OH)2(H2O)(DMSO)] formed in solution were established by a combination of experimental and theoretical methods, including Job's plot, (1)H NMR titration, electrospray inonization mass spectrometry (ESI-MS), and B3LYP-SCRF/6-31(d) and TD-B3LYP-SCRF/6-31G* density functional theory methods. The results show that Zn(II) and Al(III) are all coordinated to the imine nitrogen atom and the hydroxyl oxygen atom from H2L, which is the same as the M(2+) ions in the obtained mononuclear complexes [M(HL)2(CH3OH)2] (where M = Cd, Ni, Co, and Mg). The detection limits of H2L for Zn(II) were 5.98 µM in methanol and 5.76 µM in DMF, while the detection limits of H2L for Al(III) were 3.3 µM in methanol and 5.25 µM in DMSO. Furthermore, it is also confirmed that H2L has low toxicity for HeLa cells and could be used to detect Zn(II) and Al(III) ions in living cells by bioimaging.


Asunto(s)
Aluminio/química , Zinc/química , Cristalografía por Rayos X , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
19.
Phys Chem Chem Phys ; 16(29): 15224-30, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24938221

RESUMEN

The reaction mechanisms of [4+2] cycloaddition reactions between dienes and dienophiles have been investigated with several density functional theory (DFT) methods, such as CAM-B3LYP, BMK, M062x wB97x and wB97xd, and the obtained results show that most of the reactions are synchronous or asynchronous. The stability of the transition state is moderated by the interaction of frontier molecular orbitals (FMOs), in which a diene acts as an electron-donating partner and a dienophile acts as an electron-acceptor from the charge transfer direction in the transition state. The activation free energy barriers have been calculated with both gas-phase translational entropy and solution translational entropy, in which those from gas-phase translational entropy (output of the Gaussian job) are far away from the experimental estimations. It has been found that free-energy barriers generated from solution translational entropies with CAM-B3LYP+IDSCRF/6-31G(d), BMK+IDSCRF/6-31G(d) and wB97x+IDSCRF/6-31G(d) are very close to the experimental measurements, but both M062x and wB97xd methods predict too low free-energy barriers for most of the studied reactions. The substituent and solvent effects on reaction dynamic data have also been addressed.

20.
Phys Chem Chem Phys ; 16(3): 1078-83, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24287966

RESUMEN

A novel reaction mechanism is presented for an ortho-magnesium carboxylate driven aromatic nucleophilic substitution in naphthoic acids, supported by high-level density functional theory. Results show that the rate-determining aspects involve an R-group transfer from a Grignard reagent Mg-atom to the C1-atom on a naphthalene ring. This transfer is moderated by a molecular corral comprised of two solvent THF molecules and the naphthoic acid, which collectively marshal the R-group into position. The CAM-B3LYP method was employed together with the all-electron DZVP basis set. Solvent was treated using an implicit dielectric continuum (PCM method) and IDSCRF atomic-radii. Further evolved solvent models were also investigated, consisting of explicit solvating particles forming a primary solvation layer framing the reaction center. Reaction barriers obtained are in close agreement with experimental trends, with R-group substituent-identity tempering repulsion with the molecular corral, in-turn modulating the free-energy barriers. Partitioning of the dynamic bases of entropy contribution to free-energy was central to the successful experimental-theoretical synergy.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda