Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Drug Metab Dispos ; 52(7): 597-605, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38697851

RESUMEN

Pregnane X receptor (PXR) is essential in the regulation of liver homeostasis, and the gut microbiota is closely linked to liver physiologic and pathologic status. We previously found that activation of PXR significantly promotes liver enlargement through interaction with yes-associated protein (YAP). However, whether gut microbiota contributes to PXR-induced hepatomegaly and the involved mechanisms remain unclear. In this study, C57BL/6 mice were administered the mouse-specific agonist pregnenolone 16α-carbonitrile (PCN) for 5 days. Depletion of gut microbiota was achieved using broad-spectrum antibiotics (ABX) and fecal microbiota transplantation (FMT) was performed to restore the gut microbia. The composition of gut microbiota was analyzed by 16S rRNA sequencing, while the expression of PXR, YAP, and their downstream target genes and proteins were assessed. The results indicated that PCN treatment altered the composition and abundance of specific bacterial taxa. Furthermore, depletion of gut microbiota using ABX significantly attenuated PCN-induced hepatomegaly. FMT experiments further demonstrated that the fecal microbiota from PCN-treated mice could induce liver enlargement. Mechanistic studies revealed that ABX treatment impeded the PXR and YAP activation induced by PCN, as evidenced by decreased expression of PXR, YAP, and their downstream targets. Moreover, alterations in PXR and YAP activation were likely contributing to hepatomegaly in recipient mice following FMT from PCN-treated mice. Collectively, the current study demonstrated that gut microbiota is involved in PCN-induced hepatomegaly via regulating PXR and YAP activation, providing potential novel insights into the involvement of gut microbiota in PXR-mediated hepatomegaly. SIGNIFICANCE STATEMENT: This work describes that the composition of gut microbiota is altered in mouse pregnane X receptor (PXR) agonist pregnenolone 16α-carbonitrile (PCN)-induced hepatomegaly. Treatment with an antibiotic cocktail depletes the intestinal microbiota, leading to the impairment of liver enlargement caused by PCN. Additionally, fecal microbiota transplantation from PCN-treated mice induces liver enlargement. Further study revealed that gut microbiota is involved in hepatomegaly via regulating PXR and yes-associated protein activation.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Hepatomegalia , Ratones Endogámicos C57BL , Receptor X de Pregnano , Carbonitrilo de Pregnenolona , Proteínas Señalizadoras YAP , Animales , Hepatomegalia/inducido químicamente , Hepatomegalia/metabolismo , Receptor X de Pregnano/agonistas , Receptor X de Pregnano/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Carbonitrilo de Pregnenolona/farmacología , Proteínas Señalizadoras YAP/metabolismo , Masculino , Trasplante de Microbiota Fecal/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo
2.
Acta Pharmacol Sin ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112769

RESUMEN

Our previous study shows that activation of pregnane X receptor (PXR) exerts hepatoprotection against lithocholic acid (LCA)-induced cholestatic liver injury. In this study we investigated whether PXR activation could inhibit hepatocyte pyroptosis, as well as the underlying mechanisms. Male mice were treated with mouse PXR agonist pregnenolone 16α-carbonitrile (PCN, 50 mg·kg-1·d-1, i.p.) for 7 days, and received LCA (125 mg/kg, i.p., bid) from D4, then sacrificed 12 h after the last LCA injection. We showed that LCA injection resulted in severe cholestatic liver injury characterized by significant increases in gallbladder size, hepatocellular necrosis, and neutrophil infiltration with a mortality rate of 68%; PCN treatment significantly inhibited hepatocyte pyroptosis during LCA-induced cholestatic liver injury, as evidenced by reduced serum lactic dehydrogenase (LDH) levels, TUNEL-positive cells and hepatocyte membrane damage. Furthermore, PXR activation suppressed both the NOD-like receptor protein 3 (NLRP3) inflammasome-induced canonical pyroptosis and the apoptosis protease activating factor-1 (APAF-1) pyroptosome-induced non-canonical pyroptosis. Inhibition of the nuclear factor kappa B (NF-κB) and forkhead box O1 (FOXO1) signaling pathways was also observed following PXR activation. Notably, dual luciferase reporter assay showed that PXR activation inhibited the transcriptional effects of NF-κB on NLRP3, as well as FOXO1 on APAF-1. Our results demonstrate that PXR activation protects against cholestatic liver injury by inhibiting the canonical pyroptosis through the NF-κB-NLRP3 axis and the non-canonical pyroptosis through the FOXO1-APAF-1 axis, providing new evidence for PXR as a prospective anti-cholestatic target.

3.
Mol Ther ; 30(2): 714-725, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478872

RESUMEN

We and others have shown that MPM (micropeptide in mitochondria) regulates myogenic differentiation and muscle development. However, the roles of MPM in cancer development remain unknown. Here we revealed that MPM was downregulated significantly in human hepatocellular carcinoma (HCC) tissues and its decrease was associated with increased metastasis potential and HCC recurrence. Gain- and loss-of-function investigations disclosed that in vitro migration/invasion and in vivo liver/lung metastasis of hepatoma cells were repressed by restoring MPM expression and increased by silencing MPM. Mechanism investigations revealed that MPM interacted with NDUFA7. Mitochondrial complex I activity was inhibited by overexpressing MPM and enhanced by siMPM, and this effect of siMPM was attenuated by knocking down NDUFA7. The NAD+/NADH ratio, which was regulated by complex I, was reduced by MPM but increased by siMPM. Treatment with the NAD+ precursor nicotinamide abrogated the inhibitory effect of MPM on hepatoma cell migration. Further investigations showed that miR-17-5p bound to MPM and inhibited MPM expression. miR-17-5p upregulation was associated with MPM downregulation in HCC tissues. These findings indicate that a decrease in MPM expression may promote hepatoma metastasis by increasing mitochondrial complex I activity and the NAD+/NADH ratio.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Metástasis de la Neoplasia
4.
J Hepatol ; 75(4): 900-911, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004215

RESUMEN

BACKGROUND & AIMS: Contradictory roles of the androgen receptor (AR) in hepatocellular carcinoma (HCC) metastasis have been reported. We have shown that VETC (vessels encapsulating tumor clusters) mediates invasion-independent metastasis, whereas VETC- HCCs metastasize in an invasion-dependent manner. Herein, we aimed to reveal the roles of AR in HCC metastasis. METHODS: Mouse xenograft models, clinical samples, and cell models were used. RESULTS: AR expression was significantly lower in HCCs with a VETC pattern, portal vein tumor thrombus, endothelium-coated microemboli or high recurrence rates. Overexpressing AR in VETC+ hepatoma cells suppressed VETC formation and intrahepatic metastasis but promoted pulmonary metastasis of mouse xenografts. AR decreased the transcription of Angiopoietin-2 (Angpt2), a factor essential for VETC formation, by binding to the Angpt2 promoter. The roles of AR in inhibiting VETC formation and intrahepatic metastasis were attenuated by restoring Angpt2 expression, suggesting that AR may repress VETC-dependent intrahepatic metastasis by inhibiting Angpt2 expression and VETC formation. On the other hand, AR upregulated Rac1 expression, promoted lamellipodia formation and increased cell migration/invasion. A Rac1 inhibitor abrogated the AR-mediated promotion of migration/invasion and pulmonary metastasis of VETC+ hepatoma cells, but did not affect the AR-mediated inhibition of intrahepatic metastasis. Furthermore, an AR inhibitor decreased Rac1 expression and attenuated both intrahepatic and pulmonary metastasis of VETC- xenografts, an effect which was abrogated by restoring Rac1 expression. These data indicate that AR may facilitate the lung metastasis of VETC+ HCCs and both the liver/lung metastases of VETC- HCCs by upregulating Rac1 expression and then promoting migration/invasion. CONCLUSION: AR plays dual and opposing roles in VETC-dependent and invasion-dependent metastasis, which highlights the complex functions of AR and the importance of individualized cancer therapy. LAY SUMMARY: In this study, we uncovered the dual and opposing roles of the androgen receptor in VETC (vessels encapsulating tumor clusters)-dependent and invasion-dependent metastasis of hepatocellular carcinoma (HCC). We elucidated the underlying mechanisms of these processes, which provided novel insights into the complex regulatory network of the androgen receptor in HCC metastasis and may have important implications for precision medicine.


Asunto(s)
Neoplasias Hepáticas/etiología , Metástasis de la Neoplasia/inmunología , Receptores Androgénicos/análisis , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Neoplasias Hepáticas/fisiopatología , Ratones , Metástasis de la Neoplasia/prevención & control
5.
Hepatology ; 71(5): 1660-1677, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31509261

RESUMEN

BACKGROUND AND AIMS: DNA damage-induced NF-κB activation is a major obstacle to effective antitumour chemotherapy. Long noncoding RNAs (lncRNAs) that regulate chemoresistance of cancer cells remain largely unknown. This study aimed to characterize the lncRNAs that may affect chemotherapy sensitivity. APPROACH AND RESULTS: We found that lncRNA PDIA3P1 (protein disulfide isomerase family A member 3 pseudogene 1) was up-regulated in multiple cancer types and following treatment with DNA-damaging chemotherapeutic agents, like doxorubicin (Dox). Higher PDIA3P1 level was associated with poorer recurrence-free survival of human hepatocellular carcinoma (HCC). Both gain-of-function and loss-of-function studies revealed that PDIA3P1 protected cancer cells from Dox-induced apoptosis and allowed tumor xenografts to grow faster and to be more resistant to Dox treatment. Mechanistically, miR-125a/b and miR-124 suppressed the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), but PDIA3P1 bound to miR-125a/b/miR-124 and relieved their repression on TRAF6, leading to activation of the nuclear factor kappa B (NF-κB) pathway. Consistently, the effect of PDIA3P1 inhibition in promoting Dox-triggered apoptosis was antagonized by silencing the inhibitor of κBα (IκBα) or overexpressing TRAF6. Administration of BAY 11-7085, an NF-κB inhibitor attenuated PDIA3P1-induced resistance to Dox treatment in mouse xenografts. Moreover, up-regulation of PDIA3P1 was significantly correlated with elevation of TRAF6, phosphorylated p65, or NF-κB downstream anti-apoptosis genes in human HCC tissues. These data indicate that enhanced PDIA3P1 expression may confer chemoresistance by acting as a microRNA sponge to increase TRAF6 expression and augment NF-κB signaling. Subsequent investigations into the mechanisms of PDIA3P1 up-regulation revealed that human homologue of mRNA transport mutant 4 (hMTR4), which promotes RNA degradation, could bind to PDIA3P1, and this interaction was disrupted by Dox treatment. Overexpression of hMTR4 attenuated Dox-induced elevation of PDIA3P1, whereas silencing hMTR4 increased PDIA3P1 level, suggesting that Dox may up-regulate PDIA3P1 by abrogating the hMTR4-mediated PDIA3P1 degradation. CONCLUSION: There exists a hMTR4-PDIA3P1-miR-125/124-TRAF6 regulatory axis that regulates NF-κB signaling and chemoresistance, which may be exploited for anticancer therapy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Daño del ADN/genética , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/genética , FN-kappa B/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/antagonistas & inhibidores , Nitrilos/farmacología , Proteína Disulfuro Isomerasas/genética , Seudogenes , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Sulfonas/farmacología , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Hepatology ; 70(3): 824-839, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30506570

RESUMEN

Sorafenib is the most recommended first-line systemic therapy for advanced hepatocellular carcinoma (HCC). Yet there is no clinically applied biomarker for predicting sorafenib response. We have demonstrated that a vascular pattern, named VETC (Vessels that Encapsulate Tumor Clusters), facilitates the release of whole tumor clusters into the bloodstream; VETC-mediated metastasis relies on vascular pattern, but not on migration and invasion of cancer cells. In this study, we aimed to explore whether vascular pattern could predict sorafenib benefit. Two cohorts of patients were recruited from four academic hospitals. The survival benefit of sorafenib treatment for patients with or without the VETC pattern (VETC+ /VETC- ) was investigated. Kaplan-Meier analyses revealed that sorafenib treatment significantly reduced death risk and prolonged overall survival (OS; in cohort 1/2, P = 0.004/0.005; hazard ratio [HR] = 0.567/0.408) and postrecurrence survival (PRS; in cohort 1/2, P = 0.001/0.002; HR = 0.506/0.384) in VETC+ patients. However, sorafenib therapy was not beneficial for VETC- patients (OS in cohort 1/2, P = 0.204/0.549; HR = 0.761/1.221; PRS in cohort 1/2, P = 0.121/0.644; HR = 0.728/1.161). Univariate and multivariate analyses confirmed that sorafenib treatment significantly improved OS/PRS in VETC+ , but not VETC- , patients. Further mechanistic investigations showed that VETC+ and VETC- HCCs displayed similar levels of light chain 3 (LC3) and phosphorylated extracellular signal-regulated kinase (ERK) in tumor tissues (pERK) or endothelial cells (EC-pERK), and greater sorafenib benefit was consistently observed in VETC+ HCC patients than VETC- irrespective of levels of pERK/EC-pERK/LC3, suggesting that the different sorafenib benefit between VETC+ and VETC- HCCs may not result from activation of Raf/mitogen-activated protein kinase kinase (MEK)/ERK and vascular endothelial growth factor (VEGF)A/VEGF receptor 2 (VEGFR2)/ERK signaling or induction of autophagy. Conclusion: Sorafenib is effective in prolonging the survival of VETC+ , but not VETC- , patients. VETC pattern may act as a predictor of sorafenib benefit for HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Centros Médicos Académicos , Análisis de Varianza , Antineoplásicos , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , China , Bases de Datos Factuales , Supervivencia sin Enfermedad , Femenino , Humanos , Infusiones Intravenosas , Estimación de Kaplan-Meier , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Análisis Multivariante , Invasividad Neoplásica/patología , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Medición de Riesgo , Estadísticas no Paramétricas , Análisis de Supervivencia , Resultado del Tratamiento
7.
Hepatology ; 68(4): 1459-1475, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29637568

RESUMEN

Increased vascular permeability facilitates metastasis. Emerging evidence indicates that secreted microRNAs (miRNAs) may mediate the crosstalk between cancer and stromal cells. To date, whether and how secreted miRNAs affect vascular permeability remains unclear. Based on deep sequencing and quantitative PCR, we found that higher level of serum miR-103 was associated with higher metastasis potential of hepatocellular carcinoma (HCC). The in vitro endothelial permeability and transendothelial invasion assays revealed that the conditioned media or exosomes derived from high miR-103-expressing hepatoma cells increased the permeability of endothelial monolayers, but this effect was attenuated if exosome secretion of hepatoma cells was blocked by silencing ALIX and HRS or if miR-103 within hepatoma or endothelial cells was antagonized. Most importantly, pretreating endothelial monolayers with exosomes that were from stable miR-103-expressing hepatoma cells facilitated the transendothelial invasion of tumor cells, and this role of exosomes was abrogated by inhibiting miR-103 in endothelial cells. Further in vivo analyses disclosed that mice with xenografts of stable miR-103-expressing hepatoma cells exhibited higher vascular permeability in tumor, higher level of exosomal miR-103 and greater number of tumor cells in blood circulation, and increased rates of hepatic and pulmonary metastases, compared to control mice. Mechanism investigations revealed that hepatoma cell-secreted miR-103 could be delivered into endothelial cells via exosomes, and then attenuated the endothelial junction integrity by directly inhibiting the expression of VE-Cadherin (VE-Cad), p120-catenin (p120) and zonula occludens 1. Moreover, miR-103 could also promote tumor cell migration by repressing p120 expression in hepatoma cells. CONCLUSION: Hepatoma cell-secreted exosomal miR-103 increases vascular permeability and promotes tumor metastasis by targeting multiple endothelial junction proteins, which highlights secreted miR-103 as a potential therapeutic target and a predictive marker for HCC metastasis. (Hepatology 2018).


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Metástasis de la Neoplasia/genética , Transporte de Proteínas/genética , Animales , Biopsia con Aguja , Permeabilidad Capilar/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Exosomas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/patología , Ratones , Valores de Referencia , Sensibilidad y Especificidad , Transducción de Señal , Regulación hacia Arriba
8.
Biochim Biophys Acta ; 1859(7): 933-42, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27179445

RESUMEN

MiR-195 expression is frequently reduced in various cancers, but its underlying mechanisms remain unknown. To explore whether abnormal transcription contributed to miR-195 downregulation in hepatocellular carcinoma (HCC), we characterized the -2165-bp site upstream of mature miR-195 as transcription start site and the -2.4 to -2.0-kb fragment as the promoter of miR-195 gene. Subsequent investigation showed that deletion of the predicted Sp1 binding site decreased the miR-195 promoter activity; Sp1 silencing significantly reduced the miR-195 promoter activity and the endogenous miR-195 level; Sp1 directly interacted with the miR-195 promoter in vitro and in vivo. These data suggest Sp1 as a transactivator for miR-195 transcription. Interestingly, miR-195 expression was also subjected to epigenetic regulation. Histone deacetylase 3 (HDAC3) could anchor to the miR-195 promoter via interacting with Sp1 and consequently repress the Sp1-mediated miR-195 transactivation by deacetylating histone in HCC cells. Consistently, substantial increase of HDAC3 protein was detected in human HCC tissues and HDAC3 upregulation was significantly correlated with miR-195 downregulation, suggesting that HDAC3 elevation may represent an important cause for miR-195 reduction in HCC. Our findings uncover the mechanisms underlying the transcriptional regulation and expression deregulation of miR-195 in HCC cells and provide new insight into microRNA biogenesis in cancer cells.


Asunto(s)
Carcinoma Hepatocelular/genética , Histona Desacetilasas/fisiología , Neoplasias Hepáticas/genética , MicroARNs/genética , Factor de Transcripción Sp1/fisiología , Carcinoma Hepatocelular/metabolismo , Regulación hacia Abajo/genética , Epigénesis Genética/fisiología , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Activación Transcripcional , Células Tumorales Cultivadas
9.
J Pathol ; 240(4): 450-460, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27577856

RESUMEN

We have previously shown that vessels that encapsulated tumour cluster (VETC), a prevalent vascular pattern in hepatocellular carcinoma (HCC), facilitates the entry of the whole tumour cluster into the bloodstream in an invasion-independent manner, and that angiopoietin 2 (Angpt2), the levels of which are increased in HCC cells, is essential for VETC formation. However, the mechanisms underlying VETC formation remains unclear. Herein, we characterized miR-125b and miR-100 as novel VETC suppressors by using human HCC specimens, and cell and animal models. We showed that reduced expression of either miR-125b or miR-100 in human HCC tissues was significantly associated with the presence of VETC, venous invasion of tumour cells, and the occurrence of endothelium-coated microemboli. To confirm the role of miR-125b and miR-100 in VETC formation and HCC metastasis, cell lines with stable miR-125b and miR-100 expression were established by using human VETC-2 cells and mouse Hepa1-6 cells, the hepatoma cells that developed xenografts with VETC patterns. Our results showed that expression of miR-125b or miR-100 in VETC-2 and Hepa1-6 cells dramatically reduced VETC formation in xenografts, and consequently inhibited in vivo metastasis, suggesting that miR-125b and miR-100 may attenuate metastasis by repressing VETC formation. Further investigation revealed that miR-125b directly suppressed the expression of Angpt2 by binding to its 3'-untranslated region, whereas miR-100 reduced the protein level of Angpt2 by targeting mechanistic target of rapamycin (MTOR) and blocking the MTOR-p70S6K signalling pathway. Moreover, the suppressive effect of miR-125b and miR-100 on VETC formation was abrogated by injecting Angpt2-expressing viruses into xenografts. Taken together, our findings imply that miR-125b and miR-100 negatively regulate Angpt2 expression through different mechanisms, in turn inhibit VETC formation, and consequently abrogate the VETC-dependent metastasis of hepatoma cells. This study uncovers new regulatory mechanisms of VETC formation, identifies novel functions of miR-125b and miR-100, and provides new targets for antimetastasis therapy of HCC. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundario , Neoplasias Hepáticas/genética , MicroARNs/fisiología , Angiopoyetina 2/metabolismo , Animales , Carcinoma Hepatocelular/patología , Regulación hacia Abajo , Endotelio Vascular/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Xenoinjertos , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias , Células Neoplásicas Circulantes/patología , Células Tumorales Cultivadas
10.
Hepatology ; 72(5): 1887-1889, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32525240
11.
Hepatology ; 62(2): 452-65, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25711742

RESUMEN

UNLABELLED: Early metastasis is responsible for frequent relapse and high mortality of hepatocellular carcinoma (HCC), but its underlying mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) has been considered a key event in metastasis. Based on histological examination of serial HCC sections and three-dimensional reconstruction, we found a novel and prevalent vascular pattern, vessels that encapsulated tumor clusters (VETC) and formed cobweb-like networks. The presence of VETC (VETC(+) ) predicted higher metastasis and recurrence rates of HCC. Using clinical samples and mouse xenograft models, we further showed that VETC was composed of functional vessels with blood perfusion and induced by tumor cells at the early stage of HCC. Subsequent investigations revealed that HCC cell-derived angiopoietin-2 was a prerequisite for VETC formation and that the VETC pattern was a critical factor promoting HCC metastasis as knockdown of angiopoietin-2 abolished this vascular pattern and consequently attenuated in vivo tumor metastasis. Interestingly, abrogation of EMT by knockdown of Snail or Slug significantly diminished in vivo metastasis of VETC(-) xenografts but did not affect that of VETC(+) ones, although silencing of Snail or Slug substantially reduced the in vitro migration of both VETC(+) and VETC(-) HCC cells. In contrast to human VETC(-) cases, EMT signatures were rarely observed in VETC(+) cases with metastatic potential. Further analysis revealed that VETC provided an efficient metastasis mode by facilitating the release of whole tumor clusters into the bloodstream. CONCLUSION: Our findings identify a novel metastasis mechanism that relies on vascular pattern but is independent of EMT, which may provide new targets for antimetastasis therapy and offer a basis for selecting patients who may benefit from certain molecularly targeted drugs.


Asunto(s)
Carcinoma Hepatocelular/patología , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , Análisis de Varianza , Angiopoyetina 2/metabolismo , Animales , Biopsia con Aguja , Carcinoma Hepatocelular/fisiopatología , Distribución de Chi-Cuadrado , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Neoplasias Hepáticas/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/fisiopatología , Neovascularización Patológica/patología , Neovascularización Patológica/fisiopatología , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Tumorales Cultivadas
12.
Lancet Oncol ; 16(7): 804-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26088272

RESUMEN

BACKGROUND: The ability of circulating microRNAs (miRNAs) to detect preclinical hepatocellular carcinoma has not yet been reported. We aimed to identify and assess a serum miRNA combination that could detect the presence of clinical and preclinical hepatocellular carcinoma in at-risk patients. METHODS: We did a three-stage study that included healthy controls, inactive HBsAg carriers, individuals with chronic hepatitis B, individuals with hepatitis B-induced liver cirrhosis, and patients with diagnosed hepatocellular carcinoma from four hospitals in China. We used array analysis and quantitative PCR to identify 19 candidate serum miRNAs that were increased in six patients with hepatocellular carcinoma compared with eight control patients with chronic hepatitis B. Using a training cohort of patients with hepatocellular carcinoma and controls, we built a serum miRNA classifier to detect hepatocellular carcinoma. We then validated the classifiers' ability in two independent cohorts of patients and controls. We also established the classifiers' ability to predict preclinical hepatocellular carcinoma in a nested case-control study with sera prospectively collected from patients with hepatocellular carcinoma before clinical diagnosis and from matched individuals with hepatitis B who did not develop cancer from the same surveillance programme. We used the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) to evaluate diagnostic performance, and compared the miRNA classifier with α-fetoprotein at a cutoff of 20 ng/mL (AFP20). FINDINGS: Between Aug 1, 2009, and Aug 31, 2013, we recruited 257 participants to the training cohort, and 352 and 139 participants to the two independent validation cohorts. In the third validation cohort, 27 patients with hepatocellular carcinoma and 135 matched controls were included in the nested case-control study, which ran from Aug 1, 2009, to Aug 31, 2014. We identified a miRNA classifier (Cmi) containing seven differentially expressed miRNAs (miR-29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, and miR-505) that could detect hepatocellular carcinoma. Cmi showed higher accuracy than AFP20 to distinguish individuals with hepatocellular carcinoma from controls in the validation cohorts, but not in the training cohort (AUC 0·826 [95% CI 0·771-0·880] vs 0·814 [0·756-0·872], p=0·72 in the training cohort; 0·817 [0·769-0·865] vs 0·709 [0·653-0·765], p=0·00076 in validation cohort 1; and 0·884 [0·818-0·951] vs 0·796 [0·706-0·886], p=0·042 for validation cohort 2). In all four cohorts, Cmi had higher sensitivity (range 70·4-85·7%) than did AFP20 (40·7-69·4%) to detect hepatocellular carcinoma at the time of diagnosis, whereas its specificity (80·0-91·1%) was similar to that of AFP20 (84·9-100%). In the nested case-control study, sensitivity of Cmi to detect hepatocellular carcinoma was 29·6% (eight of 27 cases) 12 months before clinical diagnosis, 48·1% (n=13) 9 months before clinical diagnosis, 48·1% (n=13) 6 months before clinical diagnosis, and 55·6% (n=15) 3 months before clinical diagnosis, whereas sensitivity of AFP20 was only 7·4% (n=2), 11·1% (n=3), 18·5% (n=5), and 22·2% (n=6) at the corresponding timepoints (p=0·036, p=0·0030, p=0·021, p=0·012, respectively). Cmi had a larger AUC than did AFP20 to identify small-size (AUC 0·833 [0·782-0·883] vs 0·727 [0·664-0·792], p=0·0018) and early-stage (AUC 0·824 [0·781-0·868] vs 0·754 [0·702-0·806], p=0·015) hepatocellular carcinoma and could also detect α-fetoprotein-negative (AUC 0·825 [0·779-0·871]) hepatocellular carcinoma. INTERPRETATION: Cmi is a potential biomarker for hepatocellular carcinoma, and can identify small-size, early-stage, and α-fetoprotein-negative hepatocellular carcinoma in patients at risk. The miRNA classifier could be valuable to detect preclinical hepatocellular carcinoma, providing patients with a chance of curative resection and longer survival. FUNDING: National Key Basic Research Program, National Science and Technology Major Project, National Natural Science Foundation of China.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/sangre , Detección Precoz del Cáncer/métodos , Neoplasias Hepáticas/sangre , MicroARNs/sangre , Adulto , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , China , Femenino , Hepatitis B Crónica/sangre , Hepatitis B Crónica/patología , Humanos , Neoplasias Hepáticas/patología , Estudios Longitudinales , Masculino , MicroARNs/clasificación , Persona de Mediana Edad , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Valores de Referencia , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , alfa-Fetoproteínas/análisis
13.
Hepatology ; 58(2): 642-53, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23468064

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. There is frequent down-regulation of miR-195 expression in HCC tissues. In this study, the role of miR-195 in HCC angiogenesis and metastasis was investigated with in vitro capillary tube formation and transwell assays, in vivo orthotopic xenograft mouse models, and human HCC specimens. Reduction of miR-195 in HCC tissues was significantly associated with increased angiogenesis, metastasis, and worse recurrence-free survival. Both gain-of-function and loss-of-function studies of in vitro models revealed that miR-195 not only suppressed the ability of HCC cells to promote the migration and capillary tube formation of endothelial cells but also directly repressed the abilities of HCC cells to migrate and invade extracellular matrix gel. Based on mouse models, we found that the induced expression of miR-195 dramatically reduced microvessel densities in xenograft tumors and repressed both intrahepatic and pulmonary metastasis. Subsequent investigations disclosed that miR-195 directly inhibited the expression of the proangiogenic factor vascular endothelial growth factor (VEGF) and the prometastatic factors VAV2 and CDC42. Knockdown of these target molecules of miR-195 phenocopied the effects of miR-195 restoration, whereas overexpression of these targets antagonized the function of miR-195. Furthermore, we revealed that miR-195 down-regulation resulted in enhanced VEGF levels in the tumor microenvironment, which subsequently activated VEGF receptor 2 signaling in endothelial cells and thereby promoted angiogenesis. Additionally, miR-195 down-regulation led to increases in VAV2 and CDC42 expression, which stimulated VAV2/Rac1/CDC42 signaling and lamellipodia formation and thereby facilitated the metastasis of HCC cells. CONCLUSION: miR-195 deregulation contributes to angiogenesis and metastasis in HCC. The restoration of miR-195 expression may be a promising strategy for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Neoplasias Hepáticas/fisiopatología , MicroARNs/fisiología , Metástasis de la Neoplasia/fisiopatología , Neovascularización Patológica/fisiopatología , Proteínas Proto-Oncogénicas c-vav/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Xenoinjertos , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Proto-Oncogénicas c-vav/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Proteína de Unión al GTP cdc42/fisiología , Proteína de Unión al GTP rac1/fisiología
14.
Sci Rep ; 14(1): 19209, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160205

RESUMEN

The subgrade crushed-rocks of Gonghe-Yushu (Gongyu) Expressway in Qinghai Province are seriously weathered, resulting in a series of pavement diseases. Among the weathered crushed-rocks, the weathering degree of slate is particularly serious, and its physical and mechanical properties, weathering resistance and applicability are not clear. Therefore, this paper takes the slate in the subgrade crushed-rocks of Gongyu Expressway as the research object, and drills the core of the slate rock block to make a cylindrical standard sample, and uniaxial and triaxial compression tests, nuclear magnetic resonance tests, and electron probe micro-analysis tests were performed on it within 50 freeze-thaw cycles (FTC) under saturated conditions. According to the test results, the mass, longitudinal wave velocity, and strength of the slate specimens all decrease with the increase of the number of FTC, the cohesion ( C ) increases first and then decreases, and the change trend of internal friction angle (φ) is completely opposite to the cohesion. The FTC has an expansion effect on the pores of the slate specimens, and the microstructure of the rock particles on the specimen's surface is removed and becomes smooth. The results of mechanical tests are used in the Hoek-Brown (H-B) strength criterion, and a unified expression of the H-B criterion suitable for slate in permafrost regions is established. The above conclusions can provide some construction reference and maintenance of high-grade highways in cold regions.

15.
Ultrasound Med Biol ; 50(4): 617-626, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38281888

RESUMEN

OBJECTIVE: To investigate the diagnostic and prognostic value of contrast-enhanced ultrasound (CEUS) and clinical indicators of the vessels encapsulating tumor clusters (VETC) pattern and macrotrabecular-massive subtype in hepatocellular carcinoma (MTM-HCC). METHODS: This retrospective study included patients who underwent preoperative CEUS and hepatectomy for HCC between August 2018 and August 2021. Multivariable logistic regression was performed to select independent correlated factors of VETC-HCC and MTM-HCC to develop nomogram models. The association between model outcomes and early postoperative HCC recurrence was assessed using Kaplan-Meier curve and Cox regression analysis. RESULTS: The training cohort included 182 patients (54.3 ± 11.3 years, 168 males) and the validation cohort included 91 patients (54.8 ± 10.6 years, 81 males). Multivariate logistic regression analysis revealed that α-fetoprotein (AFP) levels (odds ratio [OR]: 2.26, 95% confidence interval [CI]: 1.49-3.42, p < 0.001), intratumoral nonenhancement (OR: 2.40, 95% CI: 1.02-5.64, p = 0.044), and the perfusion pattern in the CEUS arterial phase (OR: 2.27, 95% CI: 1.05-4.91, p = 0.038) were independent predictors of VETC-HCC. Besides, the former two were also independently associated with MTM-HCC (AFP level: OR: 2.36, 95% CI: 1.36-4.09, p = 0.002; intratumoral nonenhancement: OR: 3.72, 95% CI: 1.02-13.56, p = 0.046). Nomogram models were constructed based on the aforementioned indicators. Kaplan-Meier curve analysis indicated that predicted VETC-HCC or MTM-HCC exhibited higher rates of early recurrence (log-rank p < 0.001 and p = 0.002, respectively). Cox regression analysis showed that a high risk of VETC-HCC was independently correlated with early recurrence (p = 0.011). CONCLUSION: CEUS combined with AFP levels can predict VETC-HCC/MTM-HCC and prognosis preoperatively.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patología , Pronóstico , alfa-Fetoproteínas , Neoplasias Hepáticas/patología , Estudios Retrospectivos , Biomarcadores
16.
Biochem Pharmacol ; 227: 116422, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996932

RESUMEN

Carnitine palmitoyltransferase 1C (CPT1C) is an enzyme that regulates tumor cell proliferation and metabolism by modulating mitochondrial function and lipid metabolism. Hypoxia, commonly observed in solid tumors, promotes the proliferation and progression of pancreatic cancer by regulating the metabolic reprogramming of tumor cells. So far, the metabolic regulation of hypoxic tumor cells by CPT1C and the upstream mechanisms of CPT1C remain poorly understood. Yin Yang 1 (YY1) is a crucial oncogene for pancreatic tumorigenesis and acts as a transcription factor that is involved in multiple metabolic processes. This study aimed to elucidate the relationship between YY1 and CPT1C under hypoxic conditions and explore their roles in hypoxia-induced proliferation and metabolic alterations of tumor cells. The results showed enhancements in the proliferation and metabolism of PANC-1 cells under hypoxia, as evidenced by increased cell growth, cellular ATP levels, up-regulation of mitochondrial membrane potential, and decreased lipid content. Interestingly, knockdown of YY1 or CPT1C inhibited hypoxia-induced rapid cell proliferation and vigorous cell metabolism. Importantly, for the first time, we reported that YY1 directly activated the transcription of CPT1C and clarified that CPT1C was a novel target gene of YY1. Moreover, the YY1 and CPT1C were found to synergistically regulate the proliferation and metabolism of hypoxic cells through transfection with YY1 siRNA to CRISPR/Cas9-CPT1C knockout PANC-1 cells. Taken together, these results indicated that the YY1-CPT1C axis could be a new target for the intervention of pancreatic cancer proliferation and metabolism.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Proliferación Celular , Neoplasias Pancreáticas , Transducción de Señal , Factor de Transcripción YY1 , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Proliferación Celular/fisiología , Línea Celular Tumoral , Transducción de Señal/fisiología , Hipoxia de la Célula/fisiología
17.
Basic Clin Pharmacol Toxicol ; 135(2): 148-163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38887973

RESUMEN

Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver. Here, we investigated the metabolism activity of CYP1A2, CYP3A1/2 and CYP2C6/11 during PXR activation-induced liver enlargement and regeneration in rats after cocktail dosing of CYP probe drugs. For PCN-induced hepatomegaly, a notable increase in the metabolic activity of CYP3A1/2 and CYP2C6/11, as evidenced by the plasma exposure of probe substrates and the AUC ratios of the characteristic metabolites to its corresponding probe substrates. The metabolic activity of CYP1A2, CYP3A1/2 and CYP2C6/11 decreased significantly after PHx. However, PCN treatment obviously enhanced the metabolic activity of CYP2C6/11 and CYP3A1/2 in PHx rats. Furthermore, the protein expression levels of CYP3A1/2 and CYP2C6/11 in liver were up-regulated. Taken together, this study demonstrates that PXR activation not only induces hepatomegaly and liver regeneration in rats, but also promotes the protein expression and metabolic activity of the PXR downstream metabolizing enzymes such as CYP3A1/2 and CYP2C6/11 in the body.


Asunto(s)
Citocromo P-450 CYP3A , Hepatomegalia , Regeneración Hepática , Hígado , Receptor X de Pregnano , Carbonitrilo de Pregnenolona , Animales , Receptor X de Pregnano/metabolismo , Receptor X de Pregnano/genética , Regeneración Hepática/efectos de los fármacos , Masculino , Citocromo P-450 CYP3A/metabolismo , Carbonitrilo de Pregnenolona/farmacología , Hígado/metabolismo , Hígado/enzimología , Hígado/efectos de los fármacos , Ratas , Hepatomegalia/metabolismo , Hepatomegalia/patología , Hidrocarburo de Aril Hidroxilasas/metabolismo , Hidrocarburo de Aril Hidroxilasas/genética , Familia 2 del Citocromo P450/metabolismo , Familia 2 del Citocromo P450/genética , Ratas Sprague-Dawley , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética , Esteroide 16-alfa-Hidroxilasa/metabolismo , Esteroide 16-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo , Esteroide 12-alfa-Hidroxilasa/genética , Hepatectomía
18.
Cancer Res ; 83(8): 1249-1263, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36715635

RESUMEN

Angiogenesis is vital for tumor growth and metastasis. Emerging evidence suggests that metabolic reprogramming in endothelial cells (EC) may affect angiogenesis. Here, we showed that multiple regulators in the fructose metabolism pathway, especially fructose transporter SLC2A5 and fructose-metabolizing enzyme ketohexokinase (KHK), were upregulated in tumor endothelial cells from hepatocellular carcinoma (HCC). In mouse models with hepatoma xenografts or with Myc/sgp53-induced liver cancer, dietary fructose enhanced tumor angiogenesis, tumor growth, and metastasis, which could be attenuated by treatment with an inhibitor of SLC2A5. Furthermore, vessel growth was substantially increased in fructose-containing Matrigel compared with PBS-Matrigel. Inhibiting fructose metabolism in EC cells in vivo using EC-targeted nanoparticles loaded with siRNA against KHK significantly abolished fructose-induced tumor angiogenesis. Fructose treatment promoted the proliferation, migration, and tube formation of ECs and stimulated mitochondrial respiration and ATP production. Elevated fructose metabolism activated AMPK to fuel mitochondrial respiration, resulting in enhanced EC migration. Fructose metabolism was increased under hypoxic conditions as a result of HIF1α-mediated upregulation of multiple genes in the fructose metabolism pathway. These findings highlight the significance of fructose metabolism in ECs for promoting tumor angiogenesis. Restricting fructose intake or targeting fructose metabolism is a potential strategy to reduce angiogenesis and suppress tumor growth. SIGNIFICANCE: Fructose metabolism in endothelial cells fuels mitochondrial respiration to stimulate tumor angiogenesis, revealing fructose metabolism as a therapeutic target and fructose restriction as a dietary intervention for treating cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Células Endoteliales/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Fructosa , Transportador de Glucosa de Tipo 5
19.
Hepatology ; 54(5): 1729-40, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21793034

RESUMEN

UNLABELLED: Hepatocellular carcinoma (HCC) is a highly vascularized tumor with frequent intrahepatic metastasis. Active angiogenesis and metastasis are responsible for rapid recurrence and poor survival of HCC. We previously found that microRNA-29b (miR-29b) down-regulation was significantly associated with poor recurrence-free survival of HCC patients. Therefore, the role of miR-29b in tumor angiogenesis, invasion, and metastasis was further investigated in this study using in vitro capillary tube formation and transwell assays, in vivo subcutaneous and orthotopic xenograft mouse models, and Matrigel plug assay, and human HCC samples. Both gain- and loss-of-function studies showed that miR-29b dramatically suppressed the ability of HCC cells to promote capillary tube formation of endothelial cells and to invade extracellular matrix gel in vitro. Using mouse models, we revealed that tumors derived from miR-29b-expressed HCC cells displayed significant reduction in microvessel density and in intrahepatic metastatic capacity compared with those from the control group. Subsequent investigations revealed that matrix metalloproteinase-2 (MMP-2) was a direct target of miR-29b. The blocking of MMP-2 by neutralizing antibody or RNA interference phenocopied the antiangiogenesis and antiinvasion effects of miR-29b, whereas introduction of MMP-2 antagonized the function of miR-29b. We further disclosed that miR-29b exerted its antiangiogenesis function, at least partly, by suppressing MMP-2 expression in tumor cells and, in turn, impairing vascular endothelial growth factor receptor 2-signaling in endothelial cells. Consistently, in human HCC tissues and mouse xenograft tumors miR-29b level was inversely correlated with MMP-2 expression, as well as tumor angiogenesis, venous invasion, and metastasis. CONCLUSION: miR-29b deregulation contributes to angiogenesis, invasion, and metastasis of HCC. Restoration of miR-29b represents a promising new strategy in anti-HCC therapy.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundario , Neoplasias Renales/genética , Neoplasias Renales/patología , MicroARNs/genética , Neovascularización Patológica/genética , Animales , Capilares/fisiología , Carcinoma Hepatocelular/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Células HCT116 , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Renales/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Desnudos , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Trasplante de Neoplasias , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Transducción de Señal/genética , Trasplante Heterólogo
20.
Cancer Res ; 82(13): 2431-2443, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544764

RESUMEN

Micropeptides are a recently discovered class of molecules that play vital roles in various cellular processes, including differentiation, proliferation, and apoptosis. Here, we sought to identify cancer-associated micropeptides and to uncover their mechanistic functions. A micropeptide named short transmembrane protein 1 (STMP1) that localizes at the inner mitochondrial membrane was identified to be upregulated in various cancer types and associated with metastasis and recurrence of hepatocellular carcinoma. Both gain- and loss-of-function studies revealed that STMP1 increased dynamin-related protein 1 (DRP1) activation to promote mitochondrial fission and enhanced migration of tumor cells. STMP1 silencing inhibited in vivo tumor metastasis in xenograft mouse models. Overexpression of STMP1 led to redistribution of mitochondria to the leading edge of cells and enhanced lamellipodia formation. Treatment with a DRP1 inhibitor abrogated the promotive effect of STMP1 on mitochondrial fission, lamellipodia formation, and tumor cell migration in vitro and metastasis in vivo. Furthermore, STMP1 interacted with myosin heavy chain 9 (MYH9), the subunit of nonmuscle myosin II, and silencing MYH9 abrogated STMP1-induced DRP1 activation, mitochondrial fission, and cell migration. Collectively, this study identifies STMP1 as a critical regulator of metastasis and a novel unit of the mitochondrial fission protein machinery, providing a potential therapeutic target for treating metastases. SIGNIFICANCE: This study identifies the mitochondrial micropeptide STMP1 as a regulator of metastasis that promotes mitochondrial fission and tumor cell migration via DRP1 and MYH9.


Asunto(s)
Neoplasias Hepáticas , Proteínas de la Membrana , Dinámicas Mitocondriales , Proteínas Mitocondriales , Animales , Apoptosis , Dinaminas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda