Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Nano Lett ; 24(10): 3082-3088, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416583

RESUMEN

The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0°-360°) and polar angles (0°-90°) with errors of less than 2° on the experimental and simulated data under S/N of ∼4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.


Asunto(s)
Aprendizaje Profundo , Nanopartículas del Metal , Imagen Individual de Molécula , Oro , Transporte Biológico
2.
Anal Chem ; 96(6): 2500-2505, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38252963

RESUMEN

Understanding the host-guest interactions in porous materials is of great importance in the field of separation science. Probing it at the single-molecule level uncovers the inter- and intraparticle inhomogeneity and establishes structure-property relationships for guiding the design of porous materials for better separation performance. In this work, we investigated the dynamics of host-guest interactions in core-shell mesoporous silica particles under in situ conditions by using a fluorogenic reaction-initiated single-molecule tracking (riSMT) approach. Taking advantage of the low fluorescence background, three-dimensional (3D) tracking of the dynamics of the molecules inside the mesoporous silica pore was achieved with high spatial precision. Compared to the commonly used two-dimensional (2D) tracking method, the 3D tracking results show that the diffusion coefficients of the molecules are three times larger on average. Using riSMT, we quantitatively analyzed the mass transfer of probe molecules in the mesoporous silica pore, including the fraction of adsorption versus diffusion, diffusion coefficients, and residence time. Large interparticle inhomogeneity was revealed and is expected to contribute to the peak broadening for separation application at the ensemble level. We further investigated the impact of electrostatic interaction on the mass transfer of molecules in the mesoporous silica pore and discovered that the primary effect is on the fraction rather than their diffusion rates of resorufin molecules undergoing diffusion.

3.
Plant Physiol ; 193(2): 1597-1604, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37335930

RESUMEN

Carbon monoxide (CO) is a recently discovered gasotransmitter. In animals, it has been found that endogenously produced CO participates in the regulation of various metabolic processes. Recent research has indicated that CO, acting as a signaling molecule, plays a crucial regulatory role in plant development and their response to abiotic stress. In this work, we developed a fluorescent probe, named COP (carbonic oxide Probe), for the in situ imaging of CO in Arabidopsis thaliana plant tissues. The probe was designed by combining malononitrile-naphthalene as the fluorophore and a typical palladium-mediated reaction mechanism. When reacted with the released CO, COP showed an obvious fluorescence enhancement at 575 nm, which could be observed in naked-eye conditions. With a linear range of 0-10 µM, the limit of detection of COP was determined as 0.38 µM. The detection system based on COP indicated several advantages including relatively rapid response within 20 min, steadiness in a wide pH range of 5.0-10.0, high selectivity, and applicative anti-interference. Moreover, with a penetration depth of 30 µm, COP enabled 3D imaging of CO dynamics in plant samples, whether it was caused by agent release, heavy metal stress, or inner oxidation. This work provides a fluorescent probe for monitoring CO levels in plant samples, and it expands the application field of CO-detection technology, assisting researchers in understanding the dynamic changes in plant physiological processes, making it an important tool for studying plant physiology and biological processes.


Asunto(s)
Colorantes Fluorescentes , Gasotransmisores , Animales , Colorantes Fluorescentes/química , Monóxido de Carbono/metabolismo , Fluorescencia
4.
Chem Res Toxicol ; 37(1): 57-71, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38177062

RESUMEN

Epimedii Folium (EF) is a botanical dietary supplement to benefit immunity. Baohuoside I (BI), a prenylated flavonoid derived from EF, has exhibited the cholestatic risk before. Here, the mechanism of BI on the stability and membrane localization of liver MRP2, a bile acid exporter in the canalicular membrane of hepatocytes, was investigated. The fluorescent substrate of MRP2, CMFDA was accumulated in sandwich-cultured primary mouse hepatocytes (SCH) under BI stimulation, followed by reduced membrane MRP2 expression. BI triggered MRP2 endocytosis associated with oxidative stress via inhibition of the NRF2 signaling pathway. Meanwhile, BI promoted the degradation of MRP2 by reducing its SUMOylation and enhancing its ubiquitination level. Co-IP and fluorescence colocalization experiments all proved that MRP2 was a substrate protein for SUMOylation for SUMO proteins. CHX assays showed that SUMO1 prolonged the half-life of MRP2 and further increased its membrane expression, which could be reversed by UBC9 knockdown. Correspondingly, MRP2 accumulated in the cytoplasm by GP78 knockdown or under MG132 treatment. Additionally, the SUMOylation sites of MRP2 were predicted by the algorithm, and a conversion of lysines to arginines at positions 940 and 953 of human MRP2 caused its decreased stability and membrane location. K940 was further identified as the essential ubiquitination site for MRP2 by an in vitro ubiquitination assay. Moreover, the decreased ubiquitination of MRP2 enhanced the SUMOylation MRP2 and vice versa, and the crosstalk of these two modifiers could be disrupted by BI. Collectively, our findings indicated the process of MRP2 turnover from the membrane to cytoplasm at the post-translational level and further elucidated the novel toxicological mechanism of BI.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Sumoilación , Ratones , Animales , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Hepatocitos/metabolismo , Flavonoides/metabolismo , Ubiquitinación
5.
FASEB J ; 37(12): e23268, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37889798

RESUMEN

As a non-essential amino acid, cysteine could be obtained through both exogenous uptake and endogenous de novo synthesis pathways. Research has demonstrated that restricting the uptake of cystine could result in a depletion of intracellular cysteine and glutathione, ultimately leading to an increase in intracellular reactive oxygen species (ROS) levels. However, the role of methionine in regulating intracellular ROS levels is currently unclear. Here, we want to explore the role of methionine in regulating intracellular ROS levels. We found that methionine restriction could lead to a decrease in intracellular ROS levels, while supplementation with SAM can restore these levels through flow cytometry. Mechanically, we found that the methionine-SAM axis relies on CBS when regulating intracellular ROS levels. Furthermore, we speculate and prove that the methionine-SAM-CBS axis alters the metabolism of serine, thereby reducing intracellular reductive power, therefore promoting intracellular ROS levels through changing metabolite levels and genetic methods. Finally, our study revealed that high expression of CBS in tumor cells could lead to increased intracellular ROS levels, ultimately resulting in faster proliferation rates. Together, our study confirmed that methionine plays a promoting role in the regulation of intracellular ROS levels.


Asunto(s)
Cisteína , Metionina , Metionina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina , S-Adenosilmetionina , Racemetionina
6.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731549

RESUMEN

Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Biosíntesis de Proteínas , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Antituberculosos/farmacología , Antituberculosos/química , Ribosomas/metabolismo , Modelos Moleculares , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/metabolismo , Conformación Proteica
7.
J Am Chem Soc ; 145(21): 11499-11503, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37205856

RESUMEN

In multicellular organisms, cells typically communicate by sending and receiving chemical signals. Chemical messengers involved in the exocytosis of neuroendocrine cells or neurons are generally assumed to only originate from the fusing of intracellular large dense core vesicles (LDCVs) or synaptic vesicles with the cellular membrane following stimulation. Accumulated evidence suggests that exosomes─one of the main extracellular vesicles (EVs)─carrying cell-dependent DNA, mRNA, proteins, etc., play an essential role in cellular communication. Due to experimental limitations, it has been difficult to monitor the real-time release of individual exosomes; this restricts a comprehensive understanding of the basic molecular mechanisms and the functions of exosomes. In this work, we introduce amperometry with microelectrodes to capture the dynamic release of single exosomes from a single living cell, distinguish them from other EVs, and differentiate the molecules inside exosomes and those secreted from LDCVs. We show that, similar to many LDCVs and synaptic vesicles, exosomes released by neuroendocrine cells also contain catecholamine transmitters. This finding reveals a different mode of chemical communication via exosome-encapsulated chemical messengers and a potential interconnection between the two release pathways, changing the canonical view of exocytosis of neuroendocrine cells and possibly neurons. This defines a new mechanism for chemical communication at the fundamental level and opens new avenues in the research of the molecular biology of exosomes in the neuroendocrine and central nervous systems.


Asunto(s)
Exosomas , Vesículas Extracelulares , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Comunicación Celular , Membrana Celular/metabolismo , Neuronas
8.
Plant Physiol ; 188(1): 151-166, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34601578

RESUMEN

MYB transcription factors play essential roles in regulating plant secondary metabolism and jasmonate (JA) signaling. Putrescine N-methyltransferase is a key JA-regulated step in the biosynthesis of nicotine, an alkaloidal compound highly accumulated in Nicotiana spp. Here we report the identification of NtMYB305a in tobacco (Nicotiana tabacum) as a regulatory component of nicotine biosynthesis and demonstrate that it binds to the JA-responsive GAG region, which comprises a G-box, an AT-rich motif, and a GCC-box-like element, in the NtPMT1a promoter. Yeast one-hybrid analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation assays showed that NtMYB305a binds to the GAG region in vitro and in vivo. Binding specifically occurs at the ∼30-bp AT-rich motif in a G/C-base-independent manner, thus defining the AT-rich motif as previously unknown MYB-binding element. NtMYB305a localized in the nucleus of tobacco cells where it is capable of activating the expression of a 4×GAG-driven GUS reporter in an AT-rich motif-dependent manner. NtMYB305a positively regulates nicotine biosynthesis and the expression of NtPMT and other nicotine pathway genes. NtMYB305a acts synergistically with NtMYC2a to regulate nicotine biosynthesis, but no interaction between these two proteins was detected. This identification of NtMYB305a provides insights into the regulation of nicotine biosynthesis and extends the roles played by MYB transcription factors in plant secondary metabolism.


Asunto(s)
Metiltransferasas/genética , Metiltransferasas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotina/biosíntesis , Nicotina/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
9.
Annu Rev Phys Chem ; 73: 377-402, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35119943

RESUMEN

Optical microscopy has become an invaluable tool for investigating complex samples. Over the years, many advances to optical microscopes have been made that have allowed us to uncover new insights into the samples studied. Dynamic changes in biological and chemical systems are of utmost importance to study. To probe these samples, multidimensional approaches have been developed to acquire a fuller understanding of the system of interest. These dimensions include the spatial information, such as the three-dimensional coordinates and orientation of the optical probes, and additional chemical and physical properties through combining microscopy with various spectroscopic techniques. In this review, we survey the field of multidimensional microscopy and provide an outlook on the field and challenges that may arise.


Asunto(s)
Microscopía , Microscopía/métodos
10.
Environ Res ; 231(Pt 1): 115959, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105292

RESUMEN

The rapidly increasing amount of municipal sewage sludge generated in China necessitates a thorough examination and evaluation of available treatment options. In recent years, thermal-drying and incineration technology has gained popularity, however, it may lead to significant greenhouse gas (GHG) emissions. Nevertheless, the differences in boundary conditions and technological characteristic across various cases may affect emission levels significantly. Therefore, this study utilizes a life cycle assessment to estimate the GHG emissions associated with two typical sludge incineration routes in China: direct thermal-drying combined with coal co-incineration incinerator in Case 1 and indirect thermal-drying and self-sustain combustion in Case 2. The entire treatment processes, containing different functional units, were comprehensively investigated. The results demonstrate that Case 1 and Case 2 produce 1133.33 and 350.89 kg CO2-eq/tDS (sludge dry solid) of GHG emissions, respectively. In Case 1, coal co-incineration produces 828.63 kg CO2-eq/tDS of GHG emissions, accounting for 73.1% of the total GHG emissions. Moreover, the exhaust gas treatment is a significant GHG emission source, accounting for 9.2% and 16.9% of the total GHG emissions in Case 1 and Case 2, respectively. Additionally, the sludge thickening and dewatering unit in Case 2 produces 213.75 kg CO2-eq/tDS of GHG emissions, accounting for 60.9% of the total GHG emissions. Analysis of energy flow and heat balance characteristics indicate that the indirect heat transfer method used in thermal-drying leads to significant heat loss, which limits heat recovery potential and hinders GHG emission reduction. This study proposed a scenario case based on Case 2, addressing the issues with the improvement of heat transfer process and reduction of electricity consumption, potentially reducing GHG emissions by 8.8%. Additionally, applying an exhaust gas heat recovery system could further offset up to 22.8% of the total GHG emission.


Asunto(s)
Gases de Efecto Invernadero , Incineración , Animales , Aguas del Alcantarillado , Dióxido de Carbono , Efecto Invernadero , China , Emisiones de Vehículos , Carbón Mineral , Estadios del Ciclo de Vida
11.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37298689

RESUMEN

Among kidney cancers, clear cell renal cell carcinoma (ccRCC) has the highest incidence rate in adults. The survival rate of patients diagnosed as having metastatic ccRCC drastically declines even with intensive treatment. We examined the efficacy of simvastatin, a lipid-lowering drug with reduced mevalonate synthesis, in ccRCC treatment. Simvastatin was found to reduce cell viability and increase autophagy induction and apoptosis. In addition, it reduced cell metastasis and lipid accumulation, the target proteins of which can be reversed through mevalonate supplementation. Moreover, simvastatin suppressed cholesterol synthesis and protein prenylation that is essential for RhoA activation. Simvastatin might also reduce cancer metastasis by suppressing the RhoA pathway. A gene set enrichment analysis (GSEA) of the human ccRCC GSE53757 data set revealed that the RhoA and lipogenesis pathways are activated. In simvastatin-treated ccRCC cells, although RhoA was upregulated, it was mainly restrained in the cytosolic fraction and concomitantly reduced Rho-associated protein kinase activity. RhoA upregulation might be a negative feedback effect owing to the loss of RhoA activity caused by simvastatin, which can be restored by mevalonate. RhoA inactivation by simvastatin was correlated with decreased cell metastasis in the transwell assay, which was mimicked in dominantly negative RhoA-overexpressing cells. Thus, owing to the increased RhoA activation and cell metastasis in the human ccRCC dataset analysis, simvastatin-mediated Rho inactivation might serve as a therapeutic target for ccRCC patients. Altogether, simvastatin suppressed the cell viability and metastasis of ccRCC cells; thus, it is a potentially effective ccRCC adjunct therapy after clinical validation for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Simvastatina/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Ácido Mevalónico/metabolismo , Neoplasias Renales/tratamiento farmacológico , Lípidos , Proteína de Unión al GTP rhoA/metabolismo
12.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(6): 1045-1052, 2023 Dec 18.
Artículo en Zh | MEDLINE | ID: mdl-38101787

RESUMEN

OBJECTIVE: To investigate the fetal and maternal outcomes, risk factors of disease progression and adverse pregnancy outcomes (APOs) in patients with undifferentiated connective tissue disease (UCTD). METHODS: This retrospective study described the outcomes of 106 pregnancies in patients with UCTD. The patients were divided into APOs group (n=53) and non-APOs group (n=53). The APOs were defined as miscarriage, premature birth, pre-eclampsia, premature rupture of membranes (PROM), intrauterine growth restriction (IUGR), postpartum hemorrhage (PPH), and stillbirth, small for gestational age infant (SGA), low birth weight infant (LBW) and birth defects. The differences in clinical manifestations, laboratory data and pregnancy outcomes between the two groups were compared. Logistic regression analysis was performed to analyze the risk factors for APOs and the progression of UCTD to definitive CTD. RESULTS: There were 99 (93.39%) live births, 4 (3.77%) stillbirths and 3 (2.83%) miscarriage, 20 (18.86%) preterm delivery, 6 (5.66%) SGA, 17 (16.03%) LBW, 11 (10.37%) pre-eclampsia, 7 (6.60%) cases IUGR, 19 (17.92%) cases PROM, 10 (9.43%) cases PPH. Compared with the patients without APOs, the patients with APOs had a higher positive rate of anti-SSA antibodies (73.58% vs. 54.71%, P=0.036), higher rate of leukopenia (15.09% vs. 3.77%, P=0.046), lower haemoglobin level [109.00 (99.50, 118.00) g/L vs. 124.00 (111.50, 132.00) g/L, P < 0.001].Multivariate Logistic regression analysis showed that leucopenia (OR=0.82, 95%CI: 0.688-0.994) was an independent risk factors for APOs in UCTD (P=0.042). Within a mean follow-up time of 5.00 (3.00, 7.00) years, the rate of disease progression to a definite CTD was 14.15%, including 8 (7.54%) Sjögren's syndrome, 4 (3.77%) systemic lupus erythematosus (SLE), 4 (3.77%) rheumatoid arthritis and 1 (0.94%) mixed connective tissue disease. Multivariate Cox proportional risk regression analysis showed that Raynaud phenomenon (HR=40.157, 95%CI: 3.172-508.326) was an independent risk factor for progression to SLE. CONCLUSION: Leukopenia is an independent risk factor for the development of APOs in patients with UCTD. Raynaud's phenmon is a risk factor for the progression of SLE. Tight disease monitoring and regular follow-up are the key measures to prevent adverse pregnancy outcomes and predict disease progression in UCTD patients with pregnancy.


Asunto(s)
Aborto Espontáneo , Enfermedades del Tejido Conjuntivo , Leucopenia , Lupus Eritematoso Sistémico , Preeclampsia , Complicaciones del Embarazo , Enfermedades Indiferenciadas del Tejido Conectivo , Embarazo , Recién Nacido , Femenino , Humanos , Resultado del Embarazo , Estudios Retrospectivos , Aborto Espontáneo/epidemiología , Aborto Espontáneo/etiología , Preeclampsia/epidemiología , Factores de Riesgo , Complicaciones del Embarazo/epidemiología , Progresión de la Enfermedad , Enfermedades del Tejido Conjuntivo/complicaciones , Enfermedades del Tejido Conjuntivo/epidemiología
13.
J Environ Sci (China) ; 126: 321-332, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503760

RESUMEN

Sludge is the by-product of wastewater treatment process. Multisource sludge can be defined as sludge from different sources. Based on the sludge properties of five typical cities in the Yangtze River basin, including Jiujiang, Wuhu, Lu'an, Zhenjiang and Wuhan, this study investigated and summarized the characteristic variations and distribution differences of multiple indicators and substances from municipal sludge, dredged sludge, and river and lake sediments. The results demonstrated pH of multisource sludge was relatively stable in the neutral range. Organic matter and water content among municipal sludge were high and varied considerably between different wastewater treatment plants. Dredged sludge had an obviously higher sand content and wider particle distribution, which could be considered for graded utilization depending on its size. The nutrients composition of river and lake sediments was usually stable and special, with lower nitrogen and phosphorus content but higher potassium levels. The sources of heavy metals and persistent organic pollutants in multisource sludge were correlated, generally much higher among municipal sludge than dredged sludge and river and lake sediments, which were the most important limitation for final land utilization. Despite various properties of multisource sludge, the final fate and destination have some overall similarities, which need to be supplemented and improved by standards and laws. The study provided a preliminary analysis of suitable technical routes for municipal sludge, dredged sludge, river and lake sediments based on their different characteristics respectively, which was of great significance for multisource sludge co-treatment and disposal in the future of China.


Asunto(s)
Ríos , Aguas del Alcantarillado , Lagos , Ciudades , Fósforo
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(3): 399-404, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37407525

RESUMEN

Objective To analyze the genetic subtypes of human immunodeficiency virus (HIV) and the prevalence of pretreatment drug resistance in the newly reported HIV-infected men in Guangxi. Methods The stratified random sampling method was employed to select the newly reported HIV-infected men aged≥50 years old in 14 cities of Guangxi from January to June in 2020.The pol gene of HIV-1 was amplified by nested reverse transcription polymerase chain reaction and then sequenced.The mutation sites associated with drug resistance and the degree of drug resistance were then analyzed. Results A total of 615 HIV-infected men were included in the study.The genetic subtypes of CRF01_AE,CRF07_BC,and CRF08_BC accounted for 57.4% (353/615),17.1% (105/615),and 22.4% (138/615),respectively.The mutations associated with the resistance to nucleoside reverse transcriptase inhibitors (NRTI),non-nucleoside reverse transcriptase inhibitors (NNRTI),and protease inhibitors occurred in 8 (1.3%),18 (2.9%),and 0 patients,respectively.M184V (0.7%) and K103N (1.8%) were the mutations with the highest occurrence rates for the resistance to NRTIs and NNRTIs,respectively.Twenty-two (3.6%) patients were resistant to at least one type of inhibitors.Specifically,4 (0.7%),14 (2.3%),4 (0.7%),and 0 patients were resistant to NRTIs,NNRTIs,both NRTIs and NNRTIs,and protease inhibitors,respectively.The pretreatment resistance to NNRTIs had much higher frequency than that to NRTIs (2.9% vs.1.3%;χ2=3.929,P=0.047).The prevalence of pretreatment resistance to lamivudine,zidovudine,tenofovir,abacavir,rilpivirine,efavirenz,nevirapine,and lopinavir/ritonavir was 0.8%, 0.3%, 0.7%, 1.0%, 1.3%, 2.8%, 2.9%, and 0, respectively. Conclusions CRF01_AE,CRF07_BC,and CRF08_BC are the three major strains of HIV-infected men≥50 years old newly reported in Guangxi,2020,and the pretreatment drug resistance demonstrates low prevalence.


Asunto(s)
Infecciones por VIH , VIH-1 , Masculino , Humanos , Persona de Mediana Edad , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Farmacorresistencia Viral/genética , China/epidemiología , Mutación , VIH-1/genética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Genotipo
15.
J Transl Med ; 20(1): 407, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064558

RESUMEN

BACKGROUND: Atrial fibrosis plays a critical role in the development of atrial fibrillation (AF). Exosomes are a promising cell-free therapeutic approach for the treatment of AF. The purposes of this study were to explore the mechanisms by which exosomes derived from atrial myocytes regulate atrial remodeling and to determine whether their manipulation facilitates the therapeutic modulation of potential fibrotic abnormalities during AF. METHODS: We isolated exosomes from atrial myocytes and patient serum, and microRNA (miRNA) sequencing was used to analyze exosomal miRNAs in exosomes derived from atrial myocytes and patient serum. mRNA sequencing and bioinformatics analyses corroborated the key genes that were direct targets of miR-210-3p. RESULTS: The miRNA sequencing analysis identified that miR-210-3p expression was significantly increased in exosomes from tachypacing atrial myocytes and serum from patients with AF. In vitro, the miR-210-3p inhibitor reversed tachypacing-induced proliferation and collagen synthesis in atrial fibroblasts. Accordingly, miR-210-3p knock out (KO) reduced the incidence of AF and ameliorated atrial fibrosis induced by Ang II. The mRNA sequencing analysis and dual-luciferase reporter assay showed that glycerol-3-phosphate dehydrogenase 1-like (GPD1L) is a potential target gene of miR-210-3p. The functional analysis suggested that GPD1L regulated atrial fibrosis via the PI3K/AKT signaling pathway. In addition, silencing GPD1L in atrial fibroblasts induced cell proliferation, and these effects were reversed by a PI3K inhibitor (LY294002). CONCLUSIONS: Atrial myocyte-derived exosomal miR-210-3p promoted cell proliferation and collagen synthesis by inhibiting GPD1L in atrial fibroblasts. Preventing pathological crosstalk between atrial myocytes and fibroblasts may be a novel target to ameliorate atrial fibrosis in patients with AF.


Asunto(s)
Fibrilación Atrial , Exosomas , Glicerolfosfato Deshidrogenasa , Atrios Cardíacos , MicroARNs , Miocitos Cardíacos , Fibrilación Atrial/complicaciones , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Colágeno/metabolismo , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/metabolismo , Receptor Cross-Talk
16.
Langmuir ; 38(24): 7455-7461, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35676767

RESUMEN

The development of nanomaterials such as two-dimensional (2D) layered materials advanced applications in many fields, including biosensors format based on field-effect transistors. The unique physical and chemical properties of 2D layered materials enable the detection limit of biomolecules as low as ∼1 pg/mL. The majority of 2D layered materials contain different structural features and defects introduced in chemical synthesis and fabrication processing. These structural features have different physicochemical properties, causing heterogeneous adsorption of bioreceptors like antibodies, enzymes, etc. Understanding the correlation between the adsorption of bioreceptors and properties of structural features is essential for building highly efficient, sensitive biosensors based on 2D layered materials. Here, we utilize a single-molecule localization-based super-resolved fluorescence imaging method to unveil the inhomogeneous adsorption of antibody fragments on 2D layered molybdenum disulfide (MoS2). The surface coverage of antibody fragments on MoS2 thin flakes is quantitatively measured and compared at different structural features and different layer thicknesses. The methodology in the current work can be extended to study bioreceptor adsorption on other types of 2D layered materials and pave a way to improve biosensors' sensitivity based on defect engineering 2D layered materials.


Asunto(s)
Fragmentos de Inmunoglobulinas , Molibdeno , Adsorción , Disulfuros/química , Molibdeno/química
17.
Pharmacol Res ; 177: 106141, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202820

RESUMEN

BACKGROUND: Aging plays a critical role in the genesis of atrial fibrillation (AF) and also changes the gut microbes. Whether the aging-associated gut dysbiosis contributes to the development of aging-related AF and whether the gut microbes can be a target to prevent aging-related AF remains unknown. METHODS AND RESULTS: 16S rRNA gene sequencing was performed to reveal the changes of gut microbes in elderly patients with AF, and the result showed that the intestinal abundance of B. fragilis was significantly decreased in elderly patients with AF. Subsequently, we examined the impact of B. fragilis supplementation on AF promotion, atrial structural remodeling and inflammation response in D-galactose induced aging rats. We found that oral administration of B. fragilis prevented AF inducibility and duration, which was associated with attenuation of atrial senescence, apoptosis and fibrosis. Furthermore, B. fragilis significantly diminished the systemic and atrial inflammation, which is accompanied by an increase in the number of Treg cells in the spleen and blood. More importantly, we found that the circulation level of polysaccharide A (PSA), the metabolite synthesized by B. fragilis, was reduced in elderly patients with AF and could predict the occurrence of AF, and B. fragilis increased the circulation concentration of PSA in D-galactose induced aging rats. CONCLUSIONS: The abundance of B. fragilis was lower in elderly patients with AF. Oral administration of B. fragilis significantly attenuated inflammatory response by increasing Treg cells, thereby preventing atrial structural remodeling and inhibiting AF promotion in D-galactose induced aging rats. This study provides experimental evidence for the effectiveness of targeting gut microbes in the prevention of aging-related AF.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Anciano , Envejecimiento , Animales , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Fibrilación Atrial/prevención & control , Bacteroides fragilis , Modelos Animales de Enfermedad , Galactosa/metabolismo , Atrios Cardíacos , Humanos , Inflamación/metabolismo , Masculino , Antígeno Prostático Específico/metabolismo , ARN Ribosómico 16S/metabolismo , Ratas , Linfocitos T Reguladores/metabolismo
18.
BMC Gastroenterol ; 22(1): 250, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585617

RESUMEN

BACKGROUND AND AIMS: It is crucial to manage the recurrence of Crohn's disease (CD). This study is aimed to explore whether visceral adipose tissue (VAT) and skeletal muscle (SM) are associated with the recurrence of CD upon different treatments. METHODS: All patients with a definite diagnosis of CD were retrospectively divided into three groups according to distinct treatment regimens: 5-amino salicylic acid group (Group A), steroids + azathioprine (Group B) and biologics (Group C). The pretreatment computerized tomography (CT) images and clinical data were collected. The VAT area, mesenteric fat index (MFI), the ratio of VAT area to fat mass (VAT area/FM) were assessed. The primary end point was the recurrence of CD within 1 year of follow-up. RESULTS: A total of 171 CD patients were enrolled, including 57 (33.33%) patients in Group A, 70 (40.94%) patients in Group B and 44 (25.73%) patients in Group C. Patients with 1-year recurrence had higher MFI (P = 0.011) and VAT area/FM (P = 0.000). ROC curve demonstrated that patients with the ratio of VAT area/FM and MFI higher than 0.578 and 1.394 tended to have recurrence with the AUC of 0.707 and 0.709. Similar results could be observed in Group A & B but not in Group C. CONCLUSIONS: High VAT area/FM and MFI are related to recurrence within 1 year for newly diagnosed CD patients treated by 5-amino salicylic or azathioprine + steroids rather than biologics. We could not observe any radiological data associated with the recurrence of CD patients under biological treatment.


Asunto(s)
Productos Biológicos , Enfermedad de Crohn , Tejido Adiposo , Azatioprina/uso terapéutico , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/tratamiento farmacológico , Humanos , Grasa Intraabdominal/diagnóstico por imagen , Músculo Esquelético , Estudios Retrospectivos
19.
J Gastroenterol Hepatol ; 37(3): 576-583, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34907594

RESUMEN

BACKGROUND AND AIM: Remimazolam tosilate (RT) is under evaluation as a sedative for endoscopic procedures. Herein, we aimed to evaluate safety including cognition recovery of RT administered in elderly patients undergoing upper gastrointestinal endoscopy and assess its safety dosage. METHODS: Ninety-nine patients presenting for upper gastrointestinal endoscopy were randomized to receive 0.1 mg/kg RT (R1) or 0.2 mg/kg RT (R2), or propofol (P). Cognitive functions (memory, attention, and executive function) were measured via neuropsychological tests conducted before sedation and 5 min after recovery to full alertness. Adverse events were also assessed. RESULTS: There were no statistical differences between postoperative and baseline results for R1 group and P group, whereas those for R2 group revealed worsened postoperative cognitive functions (immediate recall and short delay recall) than baseline (P < 0.05). Compared with P group, Scores demonstrated worse restoration of immediate recall in R1 group, immediate recall, short-delayed recall, and attention function in R2 group (P < 0.05). Patients in R2 group had a longer sedation time (12.09 vs 8.27 vs 8.21 min; P < 0.001) and recovery time (6.85 vs 3.82 vs 4.33 min; P < 0.001) than that in R1 group and P group. Moreover, the incidence of hypotension was 3.0% in R1 group, whereas it was 21.2% in R2 group and 48.5% in P group (P < 0.05). CONCLUSION: The addition of 0.1 mg/kg RT as an adjunct to opiate sedation for upper gastrointestinal endoscopy not only achieves more stable perioperative hemodynamics but also achieves acceptable neuropsychiatric functions in elderly patients.


Asunto(s)
Benzodiazepinas , Cognición , Endoscopía Gastrointestinal , Anciano , Benzodiazepinas/efectos adversos , Benzodiazepinas/farmacología , Cognición/efectos de los fármacos , Cognición/fisiología , Humanos , Hipnóticos y Sedantes/efectos adversos , Hipnóticos y Sedantes/farmacología , Pruebas Neuropsicológicas , Propofol/farmacología
20.
Chem Soc Rev ; 50(11): 6483-6506, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34100033

RESUMEN

This review covers recent progress in using single molecule fluorescence microscopy imaging to understand the nanoconfinement in porous materials. The single molecule approach unveils the static and dynamic heterogeneities from seemingly equal molecules by removing the ensemble averaging effect. Physicochemical processes including mass transport, surface adsorption/desorption, and chemical conversions within the confined space inside porous materials have been studied at nanometer spatial resolution, at the single nanopore level, with millisecond temporal resolution, and under real chemical reaction conditions. Understanding these physicochemical processes provides the ability to quantitatively measure the inhomogeneities of nanoconfinement effects from the confining properties, including morphologies, spatial arrangement, and trapping domains. Prospects and limitations of current single molecule imaging studies on nanoconfinement are also discussed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda