Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Virol ; 98(3): e0000324, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38353538

RESUMEN

The microtubule (MT) is a highly dynamic polymer that functions in various cellular processes through MT hyperacetylation. Thus, many viruses have evolved mechanisms to hijack the MT network of the cytoskeleton to allow intracellular replication of viral genomic material. Coronavirus non-structural protein 8 (nsp8), a component of the viral replication transcriptional complex, is essential for viral survival. Here, we found that nsp8 of porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with a zoonotic potential, inhibits interferon (IFN)-ß production by targeting melanoma differentiation gene 5 (MDA5), the main pattern recognition receptor for coronaviruses in the cytoplasm. Mechanistically, PDCoV nsp8 interacted with MDA5 and induced autophagy to degrade MDA5 in wild-type cells, but not in autophagy-related (ATG)5 or ATG7 knockout cells. Further screening for autophagic degradation receptors revealed that nsp8 interacts with sequestosome 1/p62 and promotes p62-mediated selective autophagy to degrade MDA5. Importantly, PDCoV nsp8 induced hyperacetylation of MTs, which in turn triggered selective autophagic degradation of MDA5 and subsequent inhibition of IFN-ß production. Overall, our study uncovers a novel mechanism employed by PDCoV nsp8 to evade host innate immune defenses. These findings offer new insights into the interplay among viruses, IFNs, and MTs, providing a promising target to develop anti-viral drugs against PDCoV.IMPORTANCECoronavirus nsp8, a component of the viral replication transcriptional complex, is well conserved and plays a crucial role in viral replication. Exploration of the role mechanism of nsp8 is conducive to the understanding of viral pathogenesis and development of anti-viral strategies against coronavirus. Here, we found that nsp8 of PDCoV, an emerging enteropathogenic coronavirus with a zoonotic potential, is an interferon antagonist. Further studies showed that PDCoV nsp8 interacted with MDA5 and sequestosome 1/p62, promoting p62-mediated selective autophagy to degrade MDA5. We further found that PDCoV nsp8 could induce hyperacetylation of MT, therefore triggering selective autophagic degradation of MDA5 and inhibiting IFN-ß production. These findings reveal a novel immune evasion strategy used by PDCoV nsp8 and provide insights into potential therapeutic interventions.


Asunto(s)
Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Animales , Autofagia , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Deltacoronavirus/metabolismo , Interferones/metabolismo , Microtúbulos/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Porcinos , Enfermedades de los Porcinos/virología
2.
J Virol ; 98(2): e0181423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289103

RESUMEN

HDAC6, a structurally and functionally unique member of the histone deacetylase (HDAC) family, is an important host factor that restricts viral infection. The broad-spectrum antiviral activity of HDAC6 makes it a potent antiviral agent. Previously, we found that HDAC6 functions to antagonize porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. However, the final outcome is typically a productive infection that materializes as cells succumb to viral infection, indicating that the virus has evolved sophisticated mechanisms to combat the antiviral effect of HDAC6. Here, we demonstrate that PDCoV nonstructural protein 5 (nsp5) can cleave HDAC6 at glutamine 519 (Q519), and cleavage of HDAC6 was also detected in the context of PDCoV infection. More importantly, the anti-PDCoV activity of HDAC6 was damaged by nsp5 cleavage. Mechanistically, the cleaved HDAC6 fragments (amino acids 1-519 and 520-1159) lost the ability to degrade PDCoV nsp8 due to their impaired deacetylase activity. Furthermore, nsp5-mediated cleavage impaired the ability of HDAC6 to activate RIG-I-mediated interferon responses. We also tested three other swine enteric coronaviruses (transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome-coronavirus) and found that all these coronaviruses have adopted similar mechanisms to cleave HDAC6 in both an overexpression system and virus-infected cells, suggesting that cleavage of HDAC6 is a common strategy utilized by swine enteric coronaviruses to antagonize the host's antiviral capacity. Together, these data illustrate how swine enteric coronaviruses antagonize the antiviral function of HDAC6 to maintain their infection, providing new insights to the interaction between virus and host.IMPORTANCEViral infections and host defenses are in constant opposition. Once viruses combat or evade host restriction, productive infection is achieved. HDAC6 is a broad-spectrum antiviral protein that has been demonstrated to inhibit many viruses, including porcine deltacoronavirus (PDCoV). However, whether HDAC6 is reciprocally targeted and disabled by viruses remains unclear. In this study, we used PDCoV as a model and found that HDAC6 is targeted and cleaved by nsp5, a viral 3C-like protease. The cleaved HDAC6 loses its deacetylase activity as well as its ability to degrade viral proteins and activate interferon responses. Furthermore, this cleavage mechanism is shared among other swine enteric coronaviruses. These findings shed light on the intricate interplay between viruses and HDAC6, highlighting the strategies employed by viruses to evade host antiviral defenses.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Animales , Coronavirus/fisiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Deltacoronavirus , Interferones/metabolismo , Porcinos , Enfermedades de los Porcinos/virología
3.
J Virol ; 98(8): e0088024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39078176

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus with zoonotic potential. The coronavirus spike (S) glycoprotein, especially the S1 subunit, mediates viral entry by binding to cellular receptors. However, the functional receptor of PDCoV remains poorly understood. In this study, we used the soluble PDCoV S1 protein as bait to capture the S1-binding cellular transmembrane proteins in combined immunoprecipitation and mass spectrometry analyses. A single guide RNA screen identified d-glucuronyl C5-epimerase (GLCE), a heparan sulfate-modifying enzyme, as a proviral host factor for PDCoV infection. GLCE knockout significantly inhibited the attachment and internalization stages of PDCoV infection. We also demonstrated the interaction between GLCE and PDCoV S with coimmunoprecipitation in both an overexpression system and PDCoV-infected cells. GLCE could be localized to the cell membrane, and an anti-GLCE antibody suppressed PDCoV infection. Although GLCE expression alone did not render nonpermissive cells susceptible to PDCoV infection, GLCE promoted the binding of PDCoV S to porcine amino peptidase N (pAPN), acting synergistically with pAPN to enhance PDCoV infection. In conclusion, our results demonstrate that GLCE is a novel cell-surface factor facilitating PDCoV entry and provide new insights into PDCoV infection. IMPORTANCE: The identification of viral receptors is of great significance, potentially extending our understanding of viral infection and pathogenesis. Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus with the potential for cross-species transmission. However, the receptors or coreceptors of PDCoV are still poorly understood. The present study confirms that d-glucuronyl C5-epimerase (GLCE) is a positive regulator of PDCoV infection, promoting viral attachment and internalization. The anti-GLCE antibody suppressed PDCoV infection. Mechanically, GLCE interacts with PDCoV S and promotes the binding of PDCoV S to porcine amino peptidase N (pAPN), acting synergistically with pAPN to enhance PDCoV infection. This work identifies GLCE as a novel cell-surface factor facilitating PDCoV entry and paves the way for further insights into the mechanisms of PDCoV infection.


Asunto(s)
Deltacoronavirus , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Animales , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Deltacoronavirus/metabolismo , Humanos , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/genética , Unión Proteica , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/veterinaria , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/metabolismo , Línea Celular , Receptores Virales/metabolismo , Acoplamiento Viral , Células HEK293 , Membrana Celular/metabolismo , Membrana Celular/virología
4.
Nucleic Acids Res ; 51(19): 10752-10767, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739415

RESUMEN

G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Proteínas no Estructurales Virales/metabolismo , ADN Helicasas/genética , Replicación Viral/genética , ARN
5.
J Virol ; 97(5): e0037523, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37133375

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Animales , Antivirales/farmacología , Antivirales/metabolismo , Coronavirus/metabolismo , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Lisina/metabolismo , Porcinos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Replicación Viral
6.
J Virol ; 97(10): e0095723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815351

RESUMEN

IMPORTANCE: Retrograde transport has been reported to be closely associated with normal cellular biological processes and viral replication. As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has attracted considerable attention. However, whether retrograde transport is associated with PDCoV infection remains unclear. Our present study demonstrates that retromer protein VPS35 acts as a critical host factor that is required for PDCoV infection. Mechanically, VPS35 interacts with PDCoV NS6, mediating the retrograde transport of NS6 from endosomes to the Golgi and preventing it from lysosomal degradation. Recombinant PDCoVs with an NS6 deletion display resistance to VPS35 deficiency. Our work reveals a novel evasion mechanism of PDCoV that involves the manipulation of the retrograde transport pathway by VPS35, providing new insight into the mechanism of PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Proteínas de Transporte Vesicular , Proteínas Reguladoras y Accesorias Virales , Animales , Coronavirus/genética , Coronavirus/metabolismo , Deltacoronavirus , Porcinos , Replicación Viral , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
J Virol ; 96(16): e0102722, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35916536

RESUMEN

Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.


Asunto(s)
COVID-19 , Deltacoronavirus/metabolismo , Histona Desacetilasa 2/metabolismo , Enfermedades de los Porcinos , Animales , Humanos , Mamíferos , Péptido Hidrolasas , SARS-CoV-2 , Porcinos , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/virología
8.
J Virol ; 96(24): e0162622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453883

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Interacciones Microbiota-Huesped , Proteínas de Transporte de Nucleótidos , Enfermedades de los Porcinos , Animales , Humanos , Adsorción , Coronavirus , Infecciones por Coronavirus/fisiopatología , Sistemas CRISPR-Cas , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Porcinos , Enfermedades de los Porcinos/fisiopatología , Tripsina , Interacciones Microbiota-Huesped/genética , Dominios Proteicos , Sitios de Unión
9.
J Virol ; 95(24): e0134521, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586858

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, small interfering RNA (siRNA) interference, specific pharmacological inhibitors, and dominant negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin, and a low-pH environment but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV, has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis and provide clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis, which does not require a specific receptor, and clathrin-mediated endocytosis, which requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.


Asunto(s)
Infecciones por Coronavirus/virología , Deltacoronavirus/fisiología , Dinaminas/metabolismo , Endocitosis , Células Epiteliales/virología , Animales , Línea Celular , Supervivencia Celular , Clatrina/metabolismo , Coronavirus/genética , Concentración de Iones de Hidrógeno , Íleon/virología , Riñón/virología , Fosfatidilinositol 3-Quinasas/metabolismo , Pinocitosis , ARN Interferente Pequeño/metabolismo , Porcinos , Enfermedades de los Porcinos/virología , Internalización del Virus , Proteínas de Unión al GTP rab5/metabolismo
10.
Arch Virol ; 166(3): 935-941, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33492525

RESUMEN

Enteric coronaviruses (CoVs) are major pathogens that cause diarrhea in piglets. To date, four porcine enteric CoVs have been identified: transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and HKU2-like porcine enteric alphacoronavirus (PEAV). In this study, we investigated the replicative capacity of these four enteric CoVs in LLC-PK1 cells, a porcine kidney cell line. The results showed that LLC-PK1 cells are susceptible to all four enteric CoVs, particularly to TGEV and PDCoV infections, indicating that LLC-PK1 cells can be applied to porcine enteric CoV research in vitro, particularly for coinfection studies.


Asunto(s)
Deltacoronavirus/crecimiento & desarrollo , Gastroenteritis Porcina Transmisible/virología , Virus de la Diarrea Epidémica Porcina/crecimiento & desarrollo , Virus de la Gastroenteritis Transmisible/crecimiento & desarrollo , Replicación Viral/fisiología , Animales , Línea Celular , Chlorocebus aethiops , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente Indirecta , Intestino Delgado/virología , Células LLC-PK1 , Porcinos , Enfermedades de los Porcinos/virología , Células Vero
11.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29769346

RESUMEN

Porcine deltacoronavirus (PDCoV) has recently emerged as an enteric pathogen that can cause serious vomiting and diarrhea in suckling piglets. The first outbreak of PDCoV occurred in the United States in 2014 and was followed by reports of PDCoV in South Korea, China, Thailand, Lao People's Democratic Republic, and Vietnam, leading to economic losses for pig farms and posing a considerable threat to the swine industry worldwide. Our previous studies have shown that PDCoV encodes three accessory proteins, NS6, NS7, and NS7a, but the functions of these proteins in viral replication, pathogenesis, and immune regulation remain unclear. Here, we found that ectopic expression of accessory protein NS6 significantly inhibits Sendai virus-induced interferon beta (IFN-ß) production as well as the activation of transcription factors IRF3 and NF-κB. Interestingly, NS6 does not impede the IFN-ß promoter activation mediated via key molecules in the RIG-I-like receptor (RLR) signaling pathway, specifically RIG-I, MDA5, and their downstream molecules MAVS, TBK1, IKKε, and IRF3. Further analyses revealed that NS6 is not an RNA-binding protein; however, it interacts with RIG-I/MDA5. This interaction attenuates the binding of double-stranded RNA by RIG-I/MDA5, resulting in the reduction of RLR-mediated IFN-ß production. Taken together, our results demonstrate that ectopic expression of NS6 antagonizes IFN-ß production by interfering with the binding of RIG-I/MDA5 to double-stranded RNA, revealing a new strategy employed by PDCoV accessory proteins to counteract the host innate antiviral immune response.IMPORTANCE Coronavirus accessory proteins are species specific, and they perform multiple functions in viral pathogenicity and immunity, such as acting as IFN antagonists and cell death inducers. Our previous studies have shown that PDCoV encodes three accessory proteins. Here, we demonstrated for the first time that PDCoV accessory protein NS6 antagonizes IFN-ß production by interacting with RIG-I and MDA5 to impede their association with double-stranded RNA. This is an efficient strategy of antagonizing type I IFN production by disrupting the binding of host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). These findings deepen our understanding of the function of accessory protein NS6, and they may direct us toward novel therapeutic targets and lead to the development of more effective vaccines against PDCoV infection.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Coronavirus/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferón beta/biosíntesis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Coronavirus/genética , Infecciones por Coronavirus/genética , Células HEK293 , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Porcinos , Ubiquitina-Proteína Ligasas/genética , Proteínas no Estructurales Virales/genética
12.
Virus Genes ; 55(4): 520-531, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31129785

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in newborn piglets. Previous studies have suggested that PDCoV infection antagonizes RIG-I-like receptor (RLR)-mediated IFN-ß production to evade host innate immune defense, and PDCoV-encoded nonstructural protein nsp5 and accessory protein NS6 are associated with this process. However, whether the structural protein(s) of PDCoV also antagonize IFN-ß production remains unclear. In this study, we found that PDCoV nucleocapsid (N) protein, the most abundant viral structural protein, suppressed Sendai virus (SEV)-induced IFN-ß production and transcription factor IRF3 activation, but did not block IFN-ß production induced by overexpressing RIG-I/MDA5. Furthermore, study revealed that PDCoV N protein interacted with RIG-I and MDA5 in an in vitro overexpression system and evident interactions between N protein and RIG-I could be detected in the context of PDCoV infection, which interfered with the binding of dsRNA and protein activator of protein kinase R (PACT) to RIG-I. Together, our results demonstrate that PDCoV N protein is an IFN antagonist and utilizes diverse strategies to attenuate RIG-I recognition and activation.


Asunto(s)
Coronavirus/inmunología , Proteína 58 DEAD Box/antagonistas & inhibidores , Interferón beta/antagonistas & inhibidores , Proteínas de la Nucleocápside/inmunología , Porcinos/virología , Animales , Coronavirus/genética , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/antagonistas & inhibidores , Interferón beta/genética , Unión Proteica , ARN Bicatenario/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Receptores Inmunológicos , Virus Sendai/inmunología , Enfermedades de los Porcinos/virología
13.
J Gen Virol ; 98(2): 173-178, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27995863

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Bioinformatics predicts that PDCoV encodes two accessory proteins (NS6 and NS7), the species-specific proteins for coronavirus. In this study, four mAbs against the predicted NS7 were prepared by using the purified recombinant NS7 protein. Indirect immunofluorescence assay demonstrated that all mAbs recognized cells transfected with an NS7 expression construct or infected with PDCoV. Western blot showed that NS7-specific mAbs recognized an additional protein band of about 12 kDa from PDCoV-infected cell lysates but not from cells with the ectopic expression of NS7. Detailed analysis suggested that this additional protein band represented a novel accessory protein, termed NS7a, a 100 amino acid polypeptide identical to the 3' end of NS7. Moreover, NS7a is encoded by a separate subgenomic mRNA with a non-canonical transcription regulatory sequence. In summary, our results identified a third accessory protein encoded by PDCoV, which will enhance our understanding of PDCoV.


Asunto(s)
Coronavirus/metabolismo , Gastroenteritis Porcina Transmisible/virología , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Secuencia de Bases , Secuencia Conservada , Coronavirus/genética , Técnica del Anticuerpo Fluorescente Indirecta , Mutación , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Porcinos , Transfección , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/inmunología
14.
Arch Virol ; 160(3): 805-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25430905

RESUMEN

Encephalomyocarditis virus (EMCV) infects animals of various species and causes a variety of clinical symptoms. In this study, an infectious full-length cDNA clone was constructed, and the characteristics of the rescued virus were investigated in vitro and in vivo. Our data demonstrated that the growth kinetics in vitro and plaque morphology of the rescued EMCV rNJ08 strain were similar to those of the parental strain. Although rNJ08 infected BALB/c mice, none of the mice died during the observation period of 14 days post-inoculation. The availability of the infectious cDNA clone provides a genetic platform for studying gene function and for the rational design of vaccines.


Asunto(s)
Infecciones por Cardiovirus/virología , ADN Complementario/genética , Virus de la Encefalomiocarditis/fisiología , Porcinos/virología , Animales , Infecciones por Cardiovirus/patología , China , Clonación Molecular , ADN Complementario/aislamiento & purificación , Modelos Animales de Enfermedad , Virus de la Encefalomiocarditis/genética , Virus de la Encefalomiocarditis/crecimiento & desarrollo , Virus de la Encefalomiocarditis/aislamiento & purificación , Ratones Endogámicos BALB C , Análisis de Supervivencia , Ensayo de Placa Viral
15.
Redox Biol ; 71: 103112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461791

RESUMEN

The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Porcinos , Animales , Coronavirus/metabolismo , Ácido Pirúvico/metabolismo , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/patología , Infecciones por Coronavirus/patología
16.
Front Immunol ; 14: 1165606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033982

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteropathogenic coronavirus that causes high mortality in neonatal piglets. The addition of trypsin plays a crucial role in the propagation of PEDV, but also increases the complexity of vaccine production and increases its cost. Previous studies have suggested that the S2' site and Y976/977 of the PEDV spike (S) protein might be the determinants of PEDV trypsin independence. In this study, to achieve a recombinant trypsin-independent PEDV strain, we used trypsin-dependent genotype 2 (G2) PEDV variant AJ1102 to generate three recombinant PEDVs with mutations in S (S2' site R894G and/or Y976H). The three recombinant PEDVs were still trypsin dependent, suggesting that the S2' site R894 and Y976 of AJ1102 S are not key sites for PEDV trypsin dependence. Therefore, we used AJ1102 and the classical trypsin-independent genotype 1 (G1) PEDV strain JS2008 to generate a recombinant PEDV carrying a chimeric S protein, and successfully obtained trypsin-independent PEDV strain rAJ1102-S2'JS2008, in which the S2 (amino acids 894-1386) domain was replaced with the corresponding JS2008 sequence. Importantly, immunization with rAJ1102-S2'JS2008 induced neutralizing antibodies against both AJ1102 and JS2008. Collectively, these results suggest that rAJ1102-S2'JS2008 is a novel vaccine candidate with significant advantages, including no trypsin requirement for viral propagation to high titers and the potential provision of protection for pigs against G1 and G2 PEDV infections.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Vacunas Virales/genética , Enfermedades de los Porcinos/prevención & control , Mutación , Anticuerpos Neutralizantes/genética
17.
Viruses ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515178

RESUMEN

Porcine epidemic diarrhea virus (PEDV), a re-emerging enteropathogenic coronavirus, has become the predominant causative agent of lethal diarrhea in piglets, resulting in huge economic losses in many countries. Furthermore, the rapid variability of this virus has increased the emergence of novel variants with different pathogenicities. In this study, 633 fecal samples collected from diarrheic piglets in China during 2017-2019 were analyzed, and 50.08% (317/633) of these samples were PEDV-positive. The full-length spike (S) genes of 36 samples were sequenced, and a genetic evolution analysis was performed. The results showed that thirty S genes belonged to the GII-a genotype and six S genes belonged to the GII-b genotype. From the PEDV-positive samples, one strain, designated ECQ1, was successfully isolated, and its full-length genome sequence was determined. Interestingly, ECQ1 is a recombinant PEDV between the GII-a (major parent) and GII-b (minor parent) strains, with recombination occurring in the S2 domain of the S gene. The pathogenicity of ECQ1 was assessed in 5-day-old piglets and compared with that of the strain EHuB2, a representative of GII-a PEDV. Although both PEDV strains induced similar fecal viral shedding in the infected piglets, ECQ1 exhibited lower pathogenicity than did EHuB2, as evidenced by reduced mortality and less severe pathological changes in the intestines. These data suggest that PEDV strain ECQ1 is a potential live virus vaccine candidate against porcine epidemic diarrhea.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Virulencia , Infecciones por Coronavirus/epidemiología , Diarrea/veterinaria , China/epidemiología , Filogenia
18.
Autophagy ; 19(8): 2257-2274, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36779599

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus devastating the global swine industry. DEAD-box helicases (DDXs) are a family of ATP-dependent RNA helicases that are predominantly implicated in modulating cellular RNA metabolism. Meanwhile, a growing number of studies have suggested that some DDXs are associated with innate immunity and virus infection, so they are considered potential antiviral targets. Herein, we screened 40 DDXs and found that ectopic expression of DDX10 exhibited a significant anti-PRRSV effect, while DDX10 knockdown promoted PRRSV proliferation. Further analysis revealed that DDX10 positively regulates type I interferon production, which may contribute to its anti-PRRSV effect. Interestingly, PRRSV infection promoted DDX10 translocation from the nucleus to the cytoplasm for macroautophagic/autophagic degradation to block the antiviral effect of DDX10. By screening PRRSV-encoded proteins, we found that the viral envelope (E) protein interacted with DDX10. In line with the autophagic degradation of DDX10 during PRRSV infection, E protein could induce autophagy and reduce DDX10 expression in wild-type cells, but not in ATG5 or ATG7 knockout (KO) cells. When further screening the cargo receptors for autophagic degradation, we found that SQSTM1/p62 (sequestosome 1) interacted with both DDX10 and E protein, and E protein-mediated DDX10 degradation was almost entirely blocked in SQSTM1 KO cells, demonstrating that E protein degrades DDX10 by promoting SQSTM1-mediated selective autophagy. Our study reveals a novel mechanism by which PRRSV escapes host antiviral innate immunity through selective autophagy, providing a new target for developing anti-PRRSV drugs.Abbreviations: ACTB: actin beta; ATG: autophagy related; co-IP: co-immunoprecipitation; CQ: chloroquine; DDX10: DEAD-box helicase 10; E: envelope; EGFP: enhanced green fluorescent protein; hpi: hours post infection; hpt: hours post transfection; IFA: indirect immunofluorescence assay; IFN-I: type I IFN; IFNB/IFN-ß: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mAb: monoclonal antibody; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; OPTN: optineurin; ORF: open reading frame; PRRSV: porcine reproductive and respiratory syndrome virus; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; WT: wild type.


Asunto(s)
Interferón Tipo I , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Antivirales/farmacología , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/genética , Autofagia , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Interferón beta/metabolismo , Interferón Tipo I/metabolismo , FN-kappa B/metabolismo
19.
Vet Microbiol ; 284: 109834, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536161

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic enteric coronavirus that causes severe enteritis and lethal watery diarrhea in suckling piglets, leading to tremendous economic losses. Exosomes have been reported to participate in intercellular communication by the transportation of a variety of biological materials, including RNAs, lipids, and proteins. However, PEDV transmission routes have not yet been fully elucidated, and whether exosomes function in PEDV transmission remains unclear. In this study, we extracted and purified exosomes from PEDV-infected Vero cells using a stringent isolation method with a combination of chemical precipitation, ultracentrifugation, and incubation with CD63-labeled magnetic beads. We found that exosomes from PEDV-infected Vero cells contain viral genomic RNA and viral nucleocapsid protein. Furthermore, we demonstrated that the purified exosomes from PEDV-infected cells are capable of transmitting the virus to both PEDV-susceptible and non-susceptible cells. Importantly, exosome-mediated PEDV infection was resistant to neutralization by PEDV-specific neutralizing antibodies that potently neutralized free PEDV. Our study reveals a potential immune evasion mechanism utilized by PEDV and provides new insight into the transmission and infection of this important pathogen.


Asunto(s)
Infecciones por Coronavirus , Exosomas , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Chlorocebus aethiops , Animales , Porcinos , Células Vero , Exosomas/patología , Virus de la Diarrea Epidémica Porcina/genética , Anticuerpos , Evasión Inmune , ARN Viral , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria
20.
Emerg Microbes Infect ; 12(1): 2207688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37125733

RESUMEN

ABSTRACTPorcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Deltacoronavirus , Coronavirus/fisiología , Anticuerpos Neutralizantes , Infecciones por Coronavirus/veterinaria
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda