Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
EJNMMI Res ; 13(1): 102, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006431

RESUMEN

BACKGROUND: Brain metastases (BM) are the most frequent malignant brain tumors. The aim of this study was to characterize the tumor microenvironment (TME) of BM and particularly hypoxia and redox state, known to play a role in tumor growth and treatment resistance with multimodal PET and MRI imaging, immunohistochemical and proteomic approaches in a human lung cancer (H2030-BrM3)-derived BM model in rats. RESULTS: First, in vitro studies confirmed that H2030-BrM3 cells respond to hypoxia with increasing expression of HIF-1, HIF-2 and their target genes. Proteomic analyses revealed, among expression changes, proteins associated with metabolism, oxidative stress, metal response and hypoxia signaling in particular in cortical BM. [64Cu][Cu(ATSM)] PET revealed a significant uptake by cortical BM (p < 0.01), while no uptake is observed in striatal BM 23 days after tumor implantation. Pimonidazole, HIF-1α, HIF-2α, CA-IX as well as GFAP, CTR1 and DMT1 immunostainings are positive in both BM. CONCLUSION: Overall, [64Cu][Cu(ATSM)] imaging and proteomic results showed the presence of hypoxia and protein expression changes linked to hypoxia and oxidative stress in BM, which are more pronounced in cortical BM compared to striatal BM. Moreover, it emphasized the interest of [64Cu][Cu(ATSM)] PET to characterize TME of BM and depict inter-metastasis heterogeneity that could be useful to guide treatments.

2.
Front Oncol ; 11: 714514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504791

RESUMEN

Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.

3.
Sci Rep ; 11(1): 11239, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045576

RESUMEN

Lung cancer patients frequently develop brain metastases (BM). Despite aggressive treatment including neurosurgery and external-radiotherapy, overall survival remains poor. There is a pressing need to further characterize factors in the microenvironment of BM that may confer resistance to radiotherapy (RT), such as hypoxia. Here, hypoxia was first evaluated in 28 biopsies from patients with non­small cell lung cancer (NSCLC) BM, using CA-IX immunostaining. Hypoxia characterization (pimonidazole, CA-IX and HIF-1α) was also performed in different preclinical NSCLC BM models induced either by intracerebral injection of tumor cells (H2030-Br3M, H1915) into the cortex and striatum, or intracardial injection of tumor cells (H2030-Br3M). Additionally, [18F]-FMISO-PET and oxygen-saturation-mapping-MRI (SatO2-MRI) were carried out in the intracerebral BM models to further characterize tumor hypoxia and evaluate the potential of Hypoxia-image-guided-RT (HIGRT). The effect of RT on proliferation of BM ([18F]-FLT-PET), tumor volume and overall survival was determined. We showed that hypoxia is a major yet heterogeneous feature of BM from lung cancer both preclinically and clinically. HIGRT, based on hypoxia heterogeneity observed between cortical and striatal metastases in the intracerebrally induced models, showed significant potential for tumor control and animal survival. These results collectively highlight hypoxia as a hallmark of BM from lung cancer and the value of HIGRT in better controlling tumor growth.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Radioterapia Guiada por Imagen , Hipoxia Tumoral , Anciano , Animales , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/secundario , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Imagen por Resonancia Magnética , Persona de Mediana Edad , Ratas , Sistema de Registros
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda