Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Lasers Med Sci ; 39(1): 137, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795227

RESUMEN

This paper introduces a novel application of the laser speckle technique in dentistry, focusing on assessing the efficiency of dental excavation methods used to remove decayed tooth structure. The aim is to evaluate the efficiency of two chemo-mechanical agents and the high-speed drill using the laser speckle technique, which offers objective, non-invasive, and real-time evaluation capabilities. Extracted human primary molars with active occlusal carious lesions were sectioned into three parts, with each part allocated to one of three groups: Group 1 (Brix3000®), Group 2 (Papacarie DUO®), and Group 3 (High-speed drill mechanical caries removal). Caries removal was performed using the designated agent or method for each group. After caries excavation, speckle imaging using a 632.8 nm laser was conducted. Additionally, SEM was used to acquire micro-photographs of the surface morphology of the treated samples. The findings reveal insights into the comparative efficiency of the three dental excavation agents and methods using the laser speckle technique. The speckle parameters extracted from speckle patterns generated by treated teeth provide valuable information for evaluating the performance of the excavation methods. The scanning electron microscopy images also offer detailed visual evidence to support the analysis. This paper demonstrates the potential of the laser speckle technique for assessing the efficiency of dental excavation methods. The objective, non-invasive, and real-time evaluation provided offers advantages over subjective visual assessment and manual measurements.


Asunto(s)
Caries Dental , Preparación de la Cavidad Dental , Rayos Láser , Humanos , Caries Dental/terapia , Caries Dental/diagnóstico por imagen , Preparación de la Cavidad Dental/métodos , Preparación de la Cavidad Dental/instrumentación , Diente Molar/diagnóstico por imagen , Microscopía Electrónica de Rastreo , Diente Primario/diagnóstico por imagen
2.
Biomed Pharmacother ; 175: 116750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749174

RESUMEN

Connective tissue growth factor (CTGF) holds great promise for enhancing the wound healing process; however, its clinical application is hindered by its low stability and the challenge of maintaining its effective concentration at the wound site. Herein, we developed novel double-emulsion alginate (Alg) and heparin-mimetic alginate sulfate (AlgSulf)/polycaprolactone (PCL) nanoparticles (NPs) for controlled CTGF delivery to promote accelerated wound healing. The NPs' physicochemical properties, cytocompatibility, and wound healing activity were assessed on immortalized human keratinocytes (HaCaT), primary human dermal fibroblasts (HDF), and a murine cutaneous wound model. The synthesized NPs had a minimum hydrodynamic size of 200.25 nm. Treatment of HaCaT and HDF cells with Alg and AlgSulf2.0/PCL NPs did not show any toxicity when used at concentrations <50 µg/mL for up to 72 h. Moreover, the NPs' size was not affected by elevated temperatures, acidic pH, or the presence of a protein-rich medium. The NPs have slow lysozyme-mediated degradation implying that they have an extended tissue retention time. Furthermore, we found that treatment of HaCaT and HDF cells with CTGF-loaded Alg and AlgSulf2.0/PCL NPs, respectively, induced rapid cell migration (76.12% and 79.49%, P<0.05). Finally, in vivo studies showed that CTGF-loaded Alg and AlgSulf2.0/PCL NPs result in the fastest and highest wound closure at the early and late stages of wound healing, respectively (36.49%, P<0.001 on day 1; 90.45%, P<0.05 on day 10), outperforming free CTGF. Double-emulsion NPs based on Alg or AlgSulf represent a viable strategy for delivering heparin-binding GF and other therapeutics, potentially aiding various disease treatments.


Asunto(s)
Alginatos , Factor de Crecimiento del Tejido Conjuntivo , Nanopartículas , Poliésteres , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Poliésteres/química , Humanos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Animales , Nanopartículas/química , Ratones , Células HaCaT , Fibroblastos/efectos de los fármacos , Masculino , Portadores de Fármacos/química , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Queratinocitos/efectos de los fármacos , Tamaño de la Partícula , Sulfatos/química , Sulfatos/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda