Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell ; 150(5): 909-21, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22939620

RESUMEN

Some Ts in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (ß-D-glucosyl-hydroxymethyluracil). In Leishmania, about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA polymerase II termination sites. This internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J in JBP2 knockout cells is accompanied by massive readthrough at RNA polymerase II termination sites. The readthrough varies between transcription units but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive readthrough of transcriptional stops.


Asunto(s)
Glucósidos/metabolismo , Leishmania/genética , Leishmania/metabolismo , Transcripción Genética , Uracilo/análogos & derivados , Técnicas de Inactivación de Genes , ARN Polimerasa II/metabolismo , ARN Bicatenario/metabolismo , Uracilo/metabolismo
2.
Nucleic Acids Res ; 40(Database issue): D98-108, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22116062

RESUMEN

GeneDB (http://www.genedb.org) is a genome database for prokaryotic and eukaryotic pathogens and closely related organisms. The resource provides a portal to genome sequence and annotation data, which is primarily generated by the Pathogen Genomics group at the Wellcome Trust Sanger Institute. It combines data from completed and ongoing genome projects with curated annotation, which is readily accessible from a web based resource. The development of the database in recent years has focused on providing database-driven annotation tools and pipelines, as well as catering for increasingly frequent assembly updates. The website has been significantly redesigned to take advantage of current web technologies, and improve usability. The current release stores 41 data sets, of which 17 are manually curated and maintained by biologists, who review and incorporate data from the scientific literature, as well as other sources. GeneDB is primarily a production and annotation database for the genomes of predominantly pathogenic organisms.


Asunto(s)
Bases de Datos Genéticas , Genómica , Anotación de Secuencia Molecular , Animales , Artrópodos/genética , Genoma Bacteriano , Genoma de los Helmintos , Genoma de Protozoos , Internet , Vocabulario Controlado
3.
J Bacteriol ; 192(19): 4894-903, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20675476

RESUMEN

Salmonella enterica species are exposed to envelope stresses due to their environmental and infectious lifestyles. Such stresses include amphipathic cationic antimicrobial peptides (CAMPs), and resistance to these peptides is an important property for microbial virulence for animals. Bacterial mechanisms used to sense and respond to CAMP-induced envelope stress include the RcsFCDB phosphorelay, which contributes to survival from polymyxin B exposure. The Rcs phosphorelay includes two inner membrane (IM) proteins, RcsC and RcsD; the response regulator RcsB; the accessory coregulator RcsA; and an outer membrane bound lipoprotein, RcsF. Transcriptional activation of the Rcs regulon occurred within minutes of exposure to CAMP and during the first detectable signs of CAMP-induced membrane disorder. Rcs transcriptional activation by CAMPs required RcsF and preservation of its two internal disulfide linkages. The rerouting of RcsF to the inner membrane or its synthesis as an unanchored periplasmic protein resulted in constitutive activation of the Rcs regulon and RcsCD-dependent phosphorylation. These findings suggest that RcsFCDB activation in response to CAMP-induced membrane disorder is a result of a change in structure or availability of RcsF to the IM signaling constituents of the Rcs phosphorelay.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/genética , Lipoproteínas/genética , Reacción en Cadena de la Polimerasa , Unión Proteica , Regulón/genética , Regulón/fisiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Salmonella enterica/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda