Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Eur J Immunol ; 51(10): 2522-2530, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34320225

RESUMEN

Clinical trials of Treg therapy in transplantation are currently entering phases IIa and IIb, with the majority of these employing polyclonal Treg populations that harbor a broad specificity. Enhancing Treg specificity is possible with the use of chimeric antigen receptors (CARs), which can be customized to respond to a specific human leukocyte antigen (HLA). In this study, we build on our previous work in the development of HLA-A2 CAR-Tregs by further equipping cells with the constitutive expression of interleukin 10 (IL-10) and an imaging reporter as additional payloads. Cells were engineered to express combinations of these domains and assessed for phenotype and function. Cells expressing the full construct maintained a stable phenotype after transduction, were specifically activated by HLA-A2, and suppressed alloresponses potently. The addition of IL-10 provided an additional advantage to suppressive capacity. This study therefore provides an important proof-of-principle for this cell engineering approach for next-generation Treg therapy in transplantation.


Asunto(s)
Expresión Génica , Inmunomodulación , Interleucina-10/genética , Fenotipo , Receptores Quiméricos de Antígenos/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Orden Génico , Ingeniería Genética , Vectores Genéticos/genética , Humanos , Interleucina-10/metabolismo , Receptores Quiméricos de Antígenos/inmunología
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077216

RESUMEN

The number of people that are 65 years old or older has been increasing due to the improvement in medicine and public health. However, this trend is not accompanied by an increase in quality of life, and this population is vulnerable to most illnesses, especially to infectious diseases. Vaccination is the best strategy to prevent this fact, but older people present a less efficient response, as their immune system is weaker due mainly to a phenomenon known as immunosenescence. The adaptive immune system is constituted by two types of lymphocytes, T and B cells, and the function and fitness of these cell populations are affected during ageing. Here, we review the impact of ageing on T and B cells and discuss the approaches that have been described or proposed to modulate and reverse the decline of the ageing adaptive immune system.


Asunto(s)
Inmunosenescencia , Inmunidad Adaptativa , Anciano , Envejecimiento , Humanos , Calidad de Vida , Vacunación
3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077278

RESUMEN

Vaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor. Alterations in function, number, subset, and distribution of blood neutrophils, monocytes, and natural killer and dendritic cells are detected in aging, thus potentially reducing the efficacy of vaccines in older individuals. In this paper, we focus on the immunosenescence of the innate blood immune cells. We discuss possible strategies to counteract the immunosenescence of innate immunity in order to improve the response to vaccination. In particular, we focus on advances in understanding the role and the development of new adjuvants, such as TLR agonists, considered a promising strategy to increase vaccination efficiency in older individuals.


Asunto(s)
Inmunosenescencia , Vacunas , Adyuvantes Inmunológicos , Anciano , Envejecimiento , Humanos , Inmunidad Innata , Vacunación
4.
Clin Exp Immunol ; 205(2): 198-212, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33866541

RESUMEN

Ageing dramatically affects number and function of both innate and adaptive arms of immune system, particularly T cell subsets, contributing to reduced vaccination efficacy, decreased resistance to infections and increased prevalence of cancer in older people. In the present paper, we analysed the age-related changes in the absolute number of lymphocytes in 214 Sicilian subjects, and in the percentages of T and natural killer (NK) cells in a subcohort of donors. We compared these results with the immunophenotype of the oldest living Italian supercentenarian (aged 111 years). The results were also sorted by gender. The correlation between number/percentage of cells and age in all individuals. and separately in males and females, was examined using a simple linear regression analysis. We did not record the increase in the rate of inversion of the CD4/CD8 ratio, frequently reported as being associated with ageing in literature. Our observation was the direct consequence of a flat average trend of CD4+ and CD8+ T cell percentages in ageing donors, even when gender differences were included. Our results also suggest that CD4+ and CD8+ subsets are not affected equally by age comparing females with males, and we speculated that gender may affect the response to cytomegalovirus (CMV) infection. The supercentenarian showed a unique immunophenotypic signature regarding the relative percentages of her T cell subsets, with CD4+ and CD8+ T cell percentages and CD4+ naive T cell values in line with those recorded for the octogenarian subjects. This suggests that the supercentenarian has a naive 'younger' T cell profile comparable to that of a >80-year-old female.


Asunto(s)
Envejecimiento/inmunología , Células Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Relación CD4-CD8/métodos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Femenino , Identidad de Género , Humanos , Inmunofenotipificación/métodos , Masculino , Persona de Mediana Edad , Sicilia
5.
Am J Transplant ; 20(4): 1125-1136, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31715056

RESUMEN

Regulatory T cells (Tregs) are a lymphocyte subset with intrinsic immunosuppressive properties that can be expanded in large numbers ex vivo and have been shown to prevent allograft rejection and promote tolerance in animal models. To investigate the safety, applicability, and biological activity of autologous Treg adoptive transfer in humans, we conducted an open-label, dose-escalation, Phase I clinical trial in liver transplantation. Patients were enrolled while awaiting liver transplantation or 6-12 months posttransplant. Circulating Tregs were isolated from blood or leukapheresis, expanded under good manufacturing practices (GMP) conditions, and administered intravenously at either 0.5-1 million Tregs/kg or 3-4.5 million Tregs/kg. The primary endpoint was the rate of dose- limiting toxicities occurring within 4 weeks of infusion. The applicability of the clinical protocol was poor unless patient recruitment was deferred until 6-12 months posttransplant. Thus, only 3 of the 17 patients who consented while awaiting liver transplantation were dosed. In contrast, all six patients who consented 6-12 months posttransplant received the cell infusion. Treg transfer was safe, transiently increased the pool of circulating Tregs and reduced anti-donor T cell responses. Our study opens the door to employing Treg immunotherapy to facilitate the reduction or complete discontinuation of immunosuppression following liver transplantation.


Asunto(s)
Trasplante de Hígado , Linfocitos T Reguladores , Traslado Adoptivo , Animales , Humanos , Terapia de Inmunosupresión , Donantes de Tejidos
6.
Liver Transpl ; 26(6): 811-822, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297687

RESUMEN

We previously demonstrated a distinct hepatic microRNA (miRNA) signature (down-regulation of miRNA-23a, -150, - 200b, -503, and -663 and up-regulation of miRNA-20a) is associated with successful regeneration in auxiliary liver transplantation (ALT). This study aimed to evaluate whether the serum expression of this regeneration-linked miRNA signature is associated with clinical outcomes in acute and chronic liver disease. These were represented by patients with acetaminophen-induced acute liver failure (ALF; n = 18) and patients with hepatitis C virus (HCV) undergoing treatment with direct-acting antivirals (n = 56), respectively. Patients were grouped depending on their clinical outcome. Global serum miRNA expression was analyzed using polymerase chain reaction (PCR) arrays and selected miRNA expression using targeted PCR. We demonstrate that specific regeneration-linked miRNAs discriminate outcomes in both clinical scenarios. We further show that miRNA-20a, -23a, -150, -200b, -503, and -663 undergo concordant changes in expression in 3 distinct clinical settings: liver regeneration accompanying successful ALT, clinical recovery after ALF, and clinical recompensation after cure of HCV. This miRNA signature represents a potentially novel biomarker to predict outcome and optimize patient selection for liver transplantation in both acute and chronic liver disease.


Asunto(s)
Hepatitis C Crónica , Trasplante de Hígado , MicroARNs , Antivirales , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Humanos , Trasplante de Hígado/efectos adversos , MicroARNs/genética
7.
Blood ; 128(9): 1193-205, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27281795

RESUMEN

Idiopathic aplastic anemia (AA) is an immune-mediated and serious form of bone marrow failure. Akin to other autoimmune diseases, we have previously shown that in AA regulatory T cells (Tregs) are reduced in number and function. The aim of this study was to further characterize Treg subpopulations in AA and investigate the potential correlation between specific Treg subsets and response to immunosuppressive therapy (IST) as well as their in vitro expandability for potential clinical use. Using mass cytometry and an unbiased multidimensional analytical approach, we identified 2 specific human Treg subpopulations (Treg A and Treg B) with distinct phenotypes, gene expression, expandability, and function. Treg B predominates in IST responder patients, has a memory/activated phenotype (with higher expression of CD95, CCR4, and CD45RO within FOXP3(hi), CD127(lo) Tregs), expresses the interleukin-2 (IL-2)/STAT5 pathway and cell-cycle commitment genes. Furthermore, in vitro-expanded Tregs become functional and take on the characteristics of Treg B. Collectively, this study identifies human Treg subpopulations that can be used as predictive biomarkers for response to IST in AA and potentially other autoimmune diseases. We also show that Tregs from AA patients are IL-2-sensitive and expandable in vitro, suggesting novel therapeutic approaches such as low-dose IL-2 therapy and/or expanded autologous Tregs and meriting further exploration.


Asunto(s)
Anemia Aplásica/inmunología , Anemia Aplásica/terapia , Memoria Inmunológica , Terapia de Inmunosupresión/métodos , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Femenino , Factores de Transcripción Forkhead/inmunología , Humanos , Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-7/inmunología , Antígenos Comunes de Leucocito/inmunología , Masculino , Persona de Mediana Edad , Receptores CCR4/inmunología , Factor de Transcripción STAT5/inmunología , Receptor fas/inmunología
10.
Immun Ageing ; 12: 6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26157468

RESUMEN

BACKGROUND: Ineffective induction of T cell mediated immunity in older individuals remains a persistent challenge for vaccine development. Thus, there is a need for more efficient and sophisticated adjuvants that will complement novel vaccine strategies for the elderly. To this end, we have investigated a previously optimized, combined molecular adjuvant, CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity), incorporating two complementary Toll-like receptor agonists, CpG and polyI:C, a class-II epitope, and interferon (IFN)-γ in aged mice. FINDINGS: In aged mice with typical features of immunosenescence, antigen specific CD8+ T cell responses were stimulated after serial vaccinations with CASAC or Complete/Incomplete Freund's Adjuvant (CFA/IFA) and a class I epitope, deriving either from ovalbumin (SIINFEKL, SIL) or the melanoma-associated self-antigen, tyrosinase-related protein-2 (SVYDFFVWL, SVL). Pentamer analysis revealed that aged, CASAC/SIL-vaccinated animals had substantially higher frequencies of H-2K(b)/SIL-specific CD8+ T cells compared to the CFA/IFA-vaccinated groups. Similarly, higher frequencies of H-2K(b)/SVL-pentamer+ and IFN-γ+ CD8+ T cells were detected in the aged, CASAC + SVL-vaccinated mice than in their CFA/IFA-vaccinated counterparts. In both antigen settings, CASAC promoted significantly better functional CD8+ T cell activity. CONCLUSION: These studies demonstrate that functional CD8+ T cells, specific for both foreign and tumour-associated self-antigens, can be effectively induced in aged immunosenescent mice using the novel multi-factorial adjuvant CASAC.

11.
Br J Neurosurg ; 29(2): 197-205, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25541743

RESUMEN

Dendritic cell (DC) immunotherapy is developing as a promising treatment modality for patients with glioblastoma multiforme (GBM). The aim of this article is to review the data from clinical trials and prospective studies evaluating the safety and efficacy of DC vaccines for newly diagnosed (ND)- and recurrent (Rec)-GBM and for other high-grade gliomas (HGGs). By searching all major databases we identified and reviewed twenty-two (n=22) such studies, twenty (n=20) of which were phase I and II trials, one was a pilot study towards a phase I/II trial and one was a prospective study. GBM patients were exclusively recruited in 12/22 studies, while 10/22 studies enrolled patients with any diagnosis of a HGG. In 7/22 studies GBM was newly diagnosed. In the vast majority of studies the vaccine was injected subcutaneously or intradermally and consisted of mature DCs pulsed with tumour lysate or peptides. Median overall survival ranged between 16.0 and 38.4 months for ND-GBM and between 9.6 and 35.9 months for Rec-GBM. Vaccine-related side effects were in general mild (grade I and II), with serious adverse events (grade III, IV and V) reported only rarely. DC immunotherapy therefore appears to have the potential to increase the overall survival in patients with HGG, with an acceptable side effect profile. The findings will require confirmation by the ongoing and future phase III trials.


Asunto(s)
Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/inmunología , Células Dendríticas/citología , Glioblastoma/terapia , Inmunoterapia , Animales , Terapia Combinada , Humanos
12.
Blood ; 119(9): 2033-43, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22138514

RESUMEN

The role of CD4(+) T cells in the pathogenesis of aplastic anemia (AA) is not well characterized. We investigate CD4(+) T-cell subsets in AA. Sixty-three patients with acquired AA were studied. Th1 and Th2 cells were significantly higher in AA patients than in healthy donors (HDs; P = .03 and P = .006). Tregs were significantly lower in patients with severe AA than in HDs (P < .001) and patients with non-severe AA (P = .01). Th17 cells were increased in severe AA (P = .02) but normal in non-severe AA. Activated and resting Tregs were reduced in AA (P = .004; P = .01), whereas cytokine-secreting non-Tregs were increased (P = .003). Tregs from AA patients were unable to suppress normal effector T cells. In contrast, AA effector T cells were suppressible by Tregs from HDs. Th1 clonality in AA, investigated by high-throughput sequencing, was greater than in HDs (P = .03). Our results confirm that Th1 and Th2 cells are expanded and Tregs are functionally abnormal in AA. The clonally restricted expansion of Th1 cells is most likely to be antigen-driven, and induces an inflammatory environment, that exacerbate the functional impairment of Tregs, which are reduced in number.


Asunto(s)
Anemia Aplásica/inmunología , Linfocitos T CD4-Positivos/inmunología , Adolescente , Adulto , Anciano , Anemia Aplásica/tratamiento farmacológico , Anemia Aplásica/genética , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Citocinas/sangre , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunofenotipificación , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Resultado del Tratamiento , Adulto Joven
13.
Nucleic Acids Res ; 40(10): e75, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22323518

RESUMEN

MicroRNAs (miRNA) are a class of small RNA molecules that regulate numerous critical cellular processes and bind to partially complementary sequences resulting in down-regulation of their target genes. Due to the incomplete homology of the miRNA to its target site identification of miRNA target genes is difficult and currently based on computational algorithms predicting large numbers of potential targets for a given miRNA. To enable the identification of biologically relevant miRNA targets, we describe a novel functional assay based on a 3'-UTR-enriched library and a positive/negative selection strategy. As proof of principle we have used mir-130a and its validated target MAFB to test this strategy. Identification of MAFB and five additional targets and their subsequent confirmation as mir-130a targets by western blot analysis and knockdown experiments validates this strategy for the functional identification of miRNA targets.


Asunto(s)
MicroARNs/metabolismo , Regiones no Traducidas 3' , Línea Celular , Clonación Molecular , Regulación hacia Abajo , Ganciclovir/farmacología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Humanos , MicroARNs/química , Transfección
14.
Exp Biol Med (Maywood) ; 249: 10021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463391

RESUMEN

The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias de la Próstata , Telomerasa , Masculino , Humanos , Linfocitos T CD8-positivos , Telomerasa/genética , Telomerasa/metabolismo , Vacunación , Péptidos , Vacunas contra el Cáncer/efectos adversos , Receptores de Antígenos de Linfocitos T
15.
Haematologica ; 98(9): 1397-406, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23349304

RESUMEN

Inactivation of the DNA mismatch repair pathway manifests as microsatellite instability, an accumulation of mutations that drives carcinogenesis. Here, we determined whether microsatellite instability in acute myeloid leukemia and myelodysplastic syndrome correlated with chromosomal instability and poly (ADP-ribose) polymerase (PARP) inhibitor sensitivity through disruption of DNA repair function. Acute myeloid leukemia cell lines (n=12) and primary cell samples (n=18), and bone marrow mononuclear cells from high-risk myelodysplastic syndrome patients (n=63) were profiled for microsatellite instability using fluorescent fragment polymerase chain reaction. PARP inhibitor sensitivity was performed using cell survival, annexin V staining and cell cycle analysis. Homologous recombination was studied using immunocytochemical analysis. SNP karyotyping was used to study chromosomal instability. RNA silencing, Western blotting and gene expression analysis was used to study the functional consequences of mutations. Acute myeloid leukemia cell lines (4 of 12, 33%) and primary samples (2 of 18, 11%) exhibited microsatellite instability with mono-allelic mutations in CtIP and MRE11. These changes were associated with reduced expression of mismatch repair pathway components, MSH2, MSH6 and MLH1. Both microsatellite instability positive primary acute myeloid leukemia samples and cell lines demonstrated a downregulation of homologous recombination DNA repair conferring marked sensitivity to PARP inhibitors. Similarly, bone marrow mononuclear cells from 11 of 56 (20%) patients with de novo high-risk myelodysplastic syndrome exhibited microsatellite instability. Significantly, all 11 patients with microsatellite instability had cytogenetic abnormalities with 4 of them (36%) possessing a mono-allelic microsatellite mutation in CtIP. Furthermore, 50% reduction in CtIP expression by RNA silencing also down-regulated homologous recombination DNA repair responses conferring PARP inhibitor sensitivity, whilst CtIP differentially regulated the expression of homologous recombination modulating RecQ helicases, WRN and BLM. In conclusion, microsatellite instability dependent mutations in DNA repair genes, CtIP and MRE11 are detected in myeloid malignancies conferring hypersensitivity to PARP inhibitors. Microsatellite instability is significantly correlated with chromosomal instability in myeloid malignancies.


Asunto(s)
Proteínas Portadoras/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Inestabilidad de Microsatélites , Mutación/genética , Proteínas Nucleares/genética , Poli(ADP-Ribosa) Polimerasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Supervivencia Celular/genética , Endodesoxirribonucleasas , Femenino , Técnicas de Silenciamiento del Gen/métodos , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Proteína Homóloga de MRE11 , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/enzimología , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas
16.
Haematologica ; 98(8): 1196-205, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23242597

RESUMEN

Expansion of regulatory T cells occurs in high-risk myelodysplastic syndrome and correlates with a poor prognosis. DNA methyltransferase inhibitors, particularly 5-azacytidine, have been shown to increase the survival of patients with high-risk myelodysplastic syndrome. It is not entirely clear whether this improvement in patients' survival is related to the effects of DNA methyltransferase inhibitors on the immune system and/or the direct effect of these drugs on the dysplastic clone. In this study we investigated the effect of 5-azacytidine on the function and proliferation capability of regulatory T cells and T-helper cells. The number and function of CD4(+) T-cell subsets in 68 patients with intermediate-2/high-risk myelodysplastic syndrome were serially assessed at diagnosis and following treatment. The in-vitro effects of 5-azacytidine on CD4(+) T-cell subsets isolated from both healthy donors and patients with myelodysplastic syndrome were also investigated. The number of peripheral blood regulatory T cells was significantly higher in myelodysplastic syndrome patients than in healthy donors and responders to treatment (P=0.01). The absolute numbers of T-helper 1 and T-helper 2, but not T-helper 17, cells were significantly reduced following 12 months of treatment (P=0.03, P=0.03). The in vitro addition of 5-azacytidine to CD4(+) T cells reduced the proliferative capacity of regulatory T cells (P=0.03). In addition, the 5-azacytidine-treated regulatory T cells had reduced suppressive function and produced larger amounts of interleukin-17. The FOXP3 expression in 5-azacyti-dine-treated T-effectors was also increased. Interestingly, these FOXP3(+)/interleukin-17(+) cells originated mainly from effector T cells rather than regulatory T cells. Our data suggest that 5-azacytidine has profound effects on CD4(+) T cells, which correlate with disease status after treatment. Furthermore, despite the demethylation of the FOXP3 promoter and increased FOXP3 expression following 5-azacytidine treatment, these phenotypic regulatory T cell-like cells lack the regulatory function and cytokine profile of regulatory T cells. These findings are important in correlating the clinically relevant immunomodulatory effects of 5-azacytidine.


Asunto(s)
Azacitidina/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Azacitidina/farmacología , Femenino , Estudios de Seguimiento , Humanos , Recuento de Linfocitos/métodos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/inmunología , Síndromes Mielodisplásicos/mortalidad , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Resultado del Tratamiento
17.
Cancers (Basel) ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672411

RESUMEN

Osteoclasts contribute to bone marrow (BM)-mediated drug resistance in multiple myeloma (MM) by providing cytoprotective cues. Additionally, 80% of patients develop osteolytic lesions, which is a major cause of morbidity in MM. Although targeting osteoclast function is critical to improve MM therapies, pre-clinical studies rarely consider overcoming osteoclast-mediated cytoprotection within the selection criteria of drug candidates. We have performed a drug screening and identified PI3K as a key regulator of a signalling node associated with resistance to dexamethasone lenalidomide, pomalidomide, and bortezomib mediated by osteoclasts and BM fibroblastic stromal cells, which was blocked by the pan-PI3K Class IA inhibitor GDC-0941. Additionally, GDC-0941 repressed the maturation of osteoclasts derived from MM patients and disrupted the organisation of the F-actin cytoskeleton in sealing zones required for bone degradation, correlating with decreased bone resorption by osteoclasts. In vivo, GDC-0941 improved the efficacy of dexamethasone against MM in the syngeneic GFP-5T33/C57-Rawji mouse model. Taken together, our results indicate that GDC-0941 in combination with currently used therapeutic agents could effectively kill MM cells in the presence of the cytoprotective BM microenvironment while inhibiting bone resorption by osteoclasts. These data support investigating GDC-0941 in combination with currently used therapeutic drugs for MM patients with active bone disease.

18.
Cancers (Basel) ; 15(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37046649

RESUMEN

The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.

19.
Mol Ther Methods Clin Dev ; 28: 116-128, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36620071

RESUMEN

γ-Retroviral vectors (γ-RV) are powerful tools for gene therapy applications. Current clinical vectors are produced from stable producer cell lines which require minimal further downstream processing, while purification schemes for γ-RV produced by transient transfection have not been thoroughly investigated. We aimed to develop a method to purify transiently produced γ-RV for early clinical studies. Here, we report a simple one-step purification method by high-speed centrifugation for γ-RV produced by transient transfection for clinical application. High-speed centrifugation enabled the concentration of viral titers in the range of 107-108 TU/mL with >80% overall recovery. Analysis of research-grade concentrated vector revealed sufficient reduction in product- and process-related impurities. Furthermore, product characterization of clinical-grade γ-RV by BioReliance demonstrated two-logs lower impurities per transducing unit compared with regulatory authority-approved stable producer cell line vector for clinical application. In terms of CAR T cell manufacturing, clinical-grade γ-RV produced by transient transfection and purified by high-speed centrifugation was similar to γ-RV produced from a clinical-grade stable producer cell line. This method will be of value for studies using γ-RV to bridge vector supply between early- and late-stage clinical trials.

20.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321663

RESUMEN

BACKGROUND: Locally advanced/recurrent head and neck squamous cell carcinoma (HNSCC) is associated with significant morbidity and mortality. To target upregulated ErbB dimer expression in this cancer, we developed an autologous CD28-based chimeric antigen receptor T-cell (CAR-T) approach named T4 immunotherapy. Patient-derived T-cells are engineered by retroviral transduction to coexpress a panErbB-specific CAR called T1E28ζ and an IL-4-responsive chimeric cytokine receptor, 4αß, which allows IL-4-mediated enrichment of transduced cells during manufacture. These cells elicit preclinical antitumor activity against HNSCC and other carcinomas. In this trial, we used intratumoral delivery to mitigate significant clinical risk of on-target off-tumor toxicity owing to low-level ErbB expression in healthy tissues. METHODS: We undertook a phase 1 dose-escalation 3+3 trial of intratumoral T4 immunotherapy in HNSCC (NCT01818323). CAR T-cell batches were manufactured from 40 to 130 mL of whole blood using a 2-week semiclosed process. A single CAR T-cell treatment, formulated as a fresh product in 1-4 mL of medium, was injected into one or more target lesions. Dose of CAR T-cells was escalated in 5 cohorts from 1×107-1×109 T4+ T-cells, administered without prior lymphodepletion. RESULTS: Despite baseline lymphopenia in most enrolled subjects, the target cell dose was successfully manufactured in all cases, yielding up to 7.5 billion T-cells (67.5±11.8% transduced), without any batch failures. Treatment-related adverse events were all grade 2 or less, with no dose-limiting toxicities (Common Terminology Criteria for Adverse Events V.4.0). Frequent treatment-related adverse events were tumor swelling, pain, pyrexias, chills, and fatigue. There was no evidence of leakage of T4+ T-cells into the circulation following intratumoral delivery, and injection of radiolabeled cells demonstrated intratumoral persistence. Despite rapid progression at trial entry, stabilization of disease (Response Evaluation Criteria in Solid Tumors V.1.1) was observed in 9 of 15 subjects (60%) at 6 weeks post-CAR T-cell administration. Subsequent treatment with pembrolizumab and T-VEC oncolytic virus achieved a rapid complete clinical response in one subject, which was durable for over 3 years. Median overall survival was greater than for historical controls. Disease stabilization was associated with the administration of an immunophenotypically fitter, less exhausted, T4 CAR T-cell product. CONCLUSIONS: These data demonstrate the safe intratumoral administration of T4 immunotherapy in advanced HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Receptores Quiméricos de Antígenos , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Interleucina-4 , Recurrencia Local de Neoplasia , Inmunoterapia , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda