Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150468, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39088979

RESUMEN

Entamoeba nuttalli is genetically the closest to Entamoeba histolytica, the causative agent of human amebiasis, and its natural host is Macaca species. A unique E. nuttalli specific surface protein (PTORS) containing 42 repeats of octapeptide was identified by comparative genomic analysis of Entamoeba species. We aimed to elucidate the function of this protein. When trophozoites from various E. nuttalli strains were examined by immunofluorescence microscopy and flow cytometry using a PTORS-specific monoclonal antibody, only a limited proportion of trophozoites were stained, indicating that the protein was not commonly expressed in all E. nuttalli trophozoite. The proportion of trophozoites expressing PTORS increased after passage in hamster livers, suggesting that the protein functions in the virulence of trophozoites in the liver tissue. Single-cell analysis revealed that in the cluster including trophozoites with PTORS gene expression, genes of virulence-related proteins were also upregulated. Trophozoites of E. histolytica transfected with PTORS showed enhanced adherence and subsequent phagocytic activity towards human Jurkat cells, independent of the lectin. E. histolytica trophozoites expressing PTORS formed larger liver abscesses in hamsters. These results demonstrate that PTORS is a novel virulence factor in Entamoeba species.

2.
BMC Plant Biol ; 24(1): 263, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594616

RESUMEN

BACKGROUND: In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS: This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION: This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.


Asunto(s)
Microbiota , Verticillium , Verticillium/fisiología , Gossypium/genética , Gossypium/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Semillas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
3.
Plant Physiol ; 192(4): 2838-2854, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37204807

RESUMEN

Somatic embryogenesis (SE) is a key regeneration pathway in various biotechnology approaches to crop improvement, especially for economically important perennial woody crops like citrus. However, maintenance of SE capability has long been a challenge and becomes a bottleneck in biotechnology-facilitated plant improvement. In the embryogenic callus (EC) of citrus, we identified 2 csi-miR171c-targeted SCARECROW-LIKE genes CsSCL2 and CsSCL3 (CsSCL2/3), which exert positive feedback regulation on csi-miR171c expression. Suppression of CsSCL2 expression by RNA interference (RNAi) enhanced SE in citrus callus. A thioredoxin superfamily protein CsClot was identified as an interactive protein of CsSCL2/3. Overexpression of CsClot disturbed reactive oxygen species (ROS) homeostasis in EC and enhanced SE. Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq identified 660 genes directly suppressed by CsSCL2 that were enriched in biological processes including development-related processes, auxin signaling pathway, and cell wall organization. CsSCL2/3 bound to the promoters of regeneration-related genes, such as WUSCHEL-RELATED HOMEOBOX 2 (CsWOX2), CsWOX13, and Lateral Organ Boundaries Domain 40 (LBD40), and repressed their expression. Overall, CsSCL2/3 modulate ROS homeostasis through the interactive protein CsClot and directly suppress the expression of regeneration-related genes, thus regulating SE in citrus. We uncovered a regulatory pathway of miR171c-targeted CsSCL2/3 in SE, which shed light on the mechanism of SE and regeneration capability maintenance in citrus.


Asunto(s)
Citrus , Citrus/genética , Citrus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Biotecnología , RNA-Seq , Regeneración , Técnicas de Embriogénesis Somática de Plantas , Regulación de la Expresión Génica de las Plantas
4.
Inflamm Res ; 73(1): 145-155, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38085279

RESUMEN

OBJECTIVE AND DESIGN: Changes in the immune status of patients with sepsis may have a major impact on their prognosis. Our research focused on changes in various immune cell subsets and T-cell activation during the progression of sepsis. METHODS AND SUBJECTS: We collected data from 188 sepsis patients at the First Affiliated Hospital of Zhejiang University School of Medicine. The main focus was on the patient's immunocyte subset typing, T-cell activation/Treg cell analysis, and cytokine assay, which can indicate the immune status of the patient. RESULTS: The study found that the number of CD4+ T cells, CD8+ T cells, NK cells, and B cells decreased early in the disease, and the decrease in CD4+ and CD8+ T cells was more pronounced in the death group. T lymphocyte activation was inhibited, and the number of Treg cells increased as the disease progressed. T lymphocyte inhibition was more significant in the death group, and the increase in IL-10 was more significant in the death group. Finally, we used patients' baseline conditions and immunological detection indicators for modeling and found that IL-10, CD4+ Treg cells, CD3+HLA-DR+ T cells, and CD3+CD69+ T cells could predict patients' prognosis well. CONCLUSION: Our study found that immunosuppression occurs in patients early in sepsis. Early monitoring of the patient's immune status may provide a timely warning of the disease.


Asunto(s)
Citocinas , Sepsis , Humanos , Citocinas/metabolismo , Interleucina-10/metabolismo , Linfocitos T CD8-positivos , Activación de Linfocitos , Linfocitos T Reguladores , Sepsis/metabolismo , Subgrupos de Linfocitos T
5.
J Nanobiotechnology ; 22(1): 330, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862987

RESUMEN

The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.


Asunto(s)
Criopreservación , Ovario , Criopreservación/métodos , Femenino , Humanos , Animales
6.
Hepatobiliary Pancreat Dis Int ; 23(2): 186-194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37903709

RESUMEN

BACKGROUND: The 2-amino-5-chloro-N,3-dimethylbenzamide is a key intermediate in the synthesis of pesticides and pharmaceuticals. However, no literature currently exists on 2-amino-5-chloro-N,3-dimethylbenzamide poisoning in humans. This study aimed to reveal the health hazard of this chemical for humans and summarize the clinical characteristics of patients with occupational 2-amino-5-chloro-N,3-dimethylbenzamide poisoning. METHODS: This observational study included four patients with 2-amino-5-chloro-N,3-dimethylbenzamide poisoning from June 2022 to July 2022. The entire course of the incidents was described in detail. Blood 2-amino-5-chloro-N,3-dimethylbenzamide concentrations were detected by a mass spectrometer. Hematoxylin and eosin staining was performed to assess liver injury, and immunofluorescence was used to evaluate hepatic mitophagy. RESULTS: The 2-amino-5-chloro-N,3-dimethylbenzamide powder (99% purity) entered the human body mainly via the skin and respiratory tract due to poor personal protective measures. The typical course of 2-amino-5-chloro-N,3-dimethylbenzamide poisoning was divided into latency, rash, fever, organic damage, and recovery phases in accordance with the clinical evolution. Rash and fever may be the important premonitory symptoms for further organ injuries. The chemical was detected in the blood of all patients and caused multiple organ injuries, predominantly liver injury, including kidney, myocardium, and microcirculation. Three patients recovered smoothly after comprehensive treatments, including artificial liver therapy, continuous renal replacement therapy, glucocorticoids, and other symptomatic and supportive treatments. One patient survived by liver transplantation. The postoperative pathological findings of the removed liver showed acute liver failure, and immunofluorescence staining confirmed the abundance of mitophagy in residual hepatocytes. CONCLUSIONS: This study is the first to elaborate the clinical characteristics of patients with 2-amino-5-chloro-N,3-dimethylbenzamide poisoning. The chemical enters the body through the respiratory tract and skin during industrial production. The 2-amino-5-chloro-N,3-dimethylbenzamide poisoning causes multiple-organ dysfunction with a predominance of liver injury. Liver transplantation may be an effective option for patients with severe liver failure. The mechanisms of liver injury induced by 2-amino-5-chloro-N,3-dimethylbenzamide might involve abnormal mitochondrial function and mitophagy.


Asunto(s)
Exantema , Fallo Hepático , Trasplante de Hígado , Exposición Profesional , Humanos
7.
Immunology ; 170(1): 134-153, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37137669

RESUMEN

Soluble CD83 (sCD83) exerts immunosuppressive functions in many autoimmune diseases, including experimental autoimmune uveitis (EAU), but the cells and mechanisms involved are unclear. This study showed that CD83+ B cells were the main sources of sCD83. They alleviated the symptoms of EAU and decreased the percentage of T cells and DCs in the eyes and lymph nodes. These CD83+ B cells decreased IL-1ß, IL-18 and IFN-γ secretion by DCs through sCD83. sCD83 interacted with GTPase Ras-related protein (Rab1a) in DCs to promote Rab1a accumulation in autolysosomes and inhibit mTORC1 phosphorylation and NLRP3 expression. Hence, CD83+ B cells play a regulatory role in EAU by secreting sCD83. The lack of regulation of CD83+ B cells might be an important factor leading to hyperimmune activation in patients with autoimmune uveitis. CD83+ B cells suppress activated DCs in uveitis, indicating the potential therapeutic role of CD83+ B cells in uveitis.


Asunto(s)
Enfermedades Autoinmunes , Uveítis , Humanos , Ojo , Linfocitos B , Transporte Biológico
8.
BMC Psychiatry ; 23(1): 9, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600230

RESUMEN

BACKGROUND AND OBJECTIVE: Insomnia is one of the common problems encountered in the hemodialysis (HD) population, but the mechanisms remain unclear. we aimed to (1) detect the spontaneous brain activity pattern in HD patients with insomnia (HDWI) by using fractional fractional amplitude of low frequency fluctuation (fALFF) method and (2) further identify brain regions showing altered fALFF as neural markers to discriminate HDWI patients from those on hemodialysis but without insomnia (HDWoI) and healthy controls (HCs). METHOD: We compared fALFF differences among HDWI subjects (28), HDWoI subjects (28) and HCs (28), and extracted altered fALFF features for the subsequent discriminative analysis. Then, we constructed a support vector machine (SVM) classifier to identify distinct neuroimaging markers for HDWI. RESULTS: Compared with HCs, both HDWI and HDWoI patients exhibited significantly decreased fALFF in the bilateral calcarine (CAL), right middle occipital gyrus (MOG), left precentral gyrus (PreCG), bilateral postcentral gyrus (PoCG) and bilateral temporal middle gyrus (TMG), whereas increased fALFF in the bilateral cerebellum and right insula. Conversely, increased fALFF in the bilateral CAL/right MOG and decreased fALFF in the right cerebellum was observed in HDWI patients when compared with HDWoI patients. Moreover, the SVM classification achieved a good performance [accuracy = 82.14%, area under the curve (AUC) = 0.8202], and the consensus brain regions with the highest contributions to classification were located in the right MOG and right cerebellum. CONCLUSION: Our result highlights that HDWI patients had abnormal neural activities in the right MOG and right cerebellum, which might be potential neural markers for distinguishing HDWI patients from non-insomniacs, providing further support for the pathological mechanism of HDWI.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Mapeo Encefálico/métodos , Neuroimagen
9.
Ecotoxicol Environ Saf ; 252: 114575, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706526

RESUMEN

Paraquat (PQ) poisoning can induce acute lung injury and fibrosis and has an extremely high mortality rate. However, no effective treatments for PQ poisoning have been established. In this study, the potential efficacy of Tripterygium wilfordii Hook.f. (TwHF) in alleviating PQ-induced lung injury and fibrosis was investigated in a mouse model. Mice were randomly assigned to the control, PQ, PQ + TwHF1 (pretreatment before inducing poisoning), and PQ + TwHF2 (treatment after poisoning) groups. The mice in the PQ + TwHF1 group were pretreated with TwHF for 5 days before receiving one dose of PQ (120 mg/kg) and then received a daily oral gavage of the indicated dosages of TwHF until sacrifice. The mice in the PQ + TwHF2 group were treated with TwHF 2 h after PQ exposure until sacrifice. The pathological analysis and Fapi PET/CT showed that treatment with TwHF attenuated lung injury. And TwHF reduced pulmonary oxidative stress, as indicated by the reduction in, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels, as well as by the increase in superoxide dismutase (SOD) levels. Accordingly, the Perls DAB staining showed increased iron concentrations and western blotting revealed a decreased GPX4 expression after PQ exposure, as well as the mitigation of the overexpression of Nrf2 and HO-1 induced by PQ. In conclusion, our study demonstrated the potential of TwHF as a treatment for PQ-induced lung injury and fibrosis. The protective mechanism of this medicinal herb may involve the regulation of ferroptosis.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Fibrosis , Glutatión/metabolismo , Pulmón , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Paraquat/toxicidad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tripterygium/metabolismo
10.
Sheng Li Xue Bao ; 75(6): 887-902, 2023 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-38151351

RESUMEN

Cardiovascular disease (CVD) is an important factor threatening the health of the elderly. Aging leads to changes in the structure and function of the cardiovascular system, which increases the risk of CVD in the elderly. Cardiac aging is characterized by increased left ventricular wall thickness, increased degree of myocardial fibrosis, increased cardiac hardness, and decreased cardiac function, while vascular aging is characterized by enlarged lumen, thickened wall, and endothelial dysfunction. Promoting healthy cardiovascular aging means reducing the age-related cardiovascular dysfunction and the risks of CVD. Exercise is a crucial means for the treatment and rehabilitation of CVD. Exercise reduces the risk factors of CVD, remodels the cardiovascular structure, and increases the resistance of heart to detrimental stimulus, which promotes healthy cardiovascular aging. The improved mitochondrial function via exercise plays a key role in the health effects of exercise. In addition, exercise promotes the secretion of exerkines in various tissues and organs, which plays a role in reducing inflammation, improving metabolism, inhibiting apoptosis, etc., thus benefiting cardiovascular health. This review discusses the mechanism and potential application of exercise in promoting healthy cardiovascular aging. Exploring the specific mechanisms underlying exercise-induced cardiovascular health and formulating accurate exercise prescriptions for different populations is an important direction to promote healthy cardiovascular aging and prevent CVD.


Asunto(s)
Enfermedades Cardiovasculares , Corazón , Humanos , Anciano , Ejercicio Físico , Envejecimiento , Enfermedades Cardiovasculares/prevención & control , Factores de Riesgo
11.
J Mol Cell Cardiol ; 170: 87-99, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35717715

RESUMEN

OBJECTIVE: Sudden cardiac death caused by ventricular arrhythmias (VAs) is the main cause of high mortality in patients with myocardial infarction (MI). Sympathetic neural remodeling caused by inflammation after MI is closely associated with the occurrence of VAs. METTL3, the earliest identified m6A methyltransferase, is critical in mediating inflammatory responses. Our aim was to investigate whether the m6A methyltransferase METTL3 was involved in sympathetic remodeling post-MI and its specific mechanism. METHODS AND RESULTS: A rat MI model was established via left coronary artery ligation. The expression of METTL3, TRAF6, NOX2, and NF-κB increased at 3 days and remained elevated at 7 days after MI, as determined via Western blotting. METTL3 was primarily present in macrophages, as determined via immunofluorescence. Intramyocardial injection of lentivirus carrying METTL3-shRNA inhibited METTL3 expression in vivo. Methylated immunoprecipitation-qPCR determined the METTL3 knockdown inhibited the m6A level of TRAF6 mRNA 3'-UTR. The co-immunoprecipitation experiment proved that METTL3 combines with TRAF6. Western blotting showed that silencing METTL3 inhibited TRAF6 level, NF-κB activation, and ROS production; decreased cytokine release (TNF-α and IL-1ß); and downregulated nerve growth factor expression. Finally, METTL3 knockdown reduced sympathetic remodeling after MI, as determined via immunofluorescence assays of tyrosine hydroxylase and growth-associated protein 43. Programmed electrical stimulation, renal sympathetic nerve activity recording, and haemodynamic measurements showed that METTL3 inhibition decreased sympathetic activity and improved cardiac function. CONCLUSIONS: Downregulation of METTL3 expression attenuated the excessive sympathetic neural remodeling induced by MI, further reducing the incidence of VAs and improving cardiac function. This was partly associated with the inhibition of the TRAF6/NF-κB pathway and ROS production.


Asunto(s)
Infarto del Miocardio , FN-kappa B , Animales , Ratas , Arritmias Cardíacas , Metiltransferasas/metabolismo , Infarto del Miocardio/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Remodelación Ventricular
12.
J Cell Mol Med ; 26(4): 1264-1280, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35040253

RESUMEN

Ventricular arrhythmias (VAs) triggers by sympathetic nerve hyperactivity contribute to sudden cardiac death in myocardial infarction (MI) patients. Microglia-mediated inflammation in the paraventricular nucleus (PVN) is involved in sympathetic hyperactivity after MI. N6-methyladenosine (m6 A), the most prevalent mRNA and epigenetic modification, is critical for mediating cell inflammation. We aimed to explore whether METTL3-mediated m6 A modification is involved in microglia-mediated sympathetic hyperactivity after MI in the PVN. MI model was established by left coronary artery ligation. METTL3-mediated m6 A modification was markedly increased in the PVN at 3 days after MI, and METTL3 was primarily located in microglia by immunofluorescence. RNA-seq, MeRIP-seq, MeRIP-qPCR, immunohistochemistry, ELISA, heart rate variability measurements, renal sympathetic nerve activity recording and programmed electrical stimulation confirmed that the elevated toll-like receptor 4 (TLR4) expression by m6 A modification on TLR4 mRNA 3'-UTR region combined with activated NF-κB signalling led to the overwhelming production of pro-inflammatory cytokines IL-1ß and TNF-α in the PVN, thus inducing the sympathetic hyperactivity and increasing the incidence of VAs post-MI. Targeting METTL3 attenuated the inflammatory response and sympathetic hyperactivity and reduced the incidence of VAs post-MI.


Asunto(s)
Metiltransferasas , Infarto del Miocardio , Animales , Corazón , Humanos , Metilación , Metiltransferasas/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Sistema Nervioso Simpático/metabolismo
13.
J Exp Bot ; 73(18): 6170-6185, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35661206

RESUMEN

Somatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus. However, the downstream regulatory pathway of the miR156-SPL module in SE remains unclear. In this study, we found that transcription factors CsAGL15 and CsFUS3 bind to the CsMIR156A promoter and activate its expression. Suppression of csi-miR156a function leads to up-regulation of four target genes, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (CsSPL) genes, and reduction of SE efficiency. In the short tandem target mimic (STTM)-miR156a overexpression callus (MIM156), the number of amyloplasts and starch content were significantly reduced, and genes involved in starch synthesis and transport were down-regulated. csi-miR172d was down-regulated, whereas the target genes, CsTOE1.1 and CsTOE1.2, which inhibit the expression of starch biosynthesis genes, were up-regulated. In our working model, CsAGL15 and CsFUS3 activate csi-miR156a, which represses CsSPLs and further regulates csi-miR172d and CsTOEs, thus altering starch accumulation in callus cells and regulating SE in citrus. This study elucidates the pathway of miR156-SPLs and miR172-TOEs-mediated regulation of SE, and provides new insights into enhancing SE capability in citrus.


Asunto(s)
Citrus , MicroARNs , Regulación de la Expresión Génica de las Plantas , Citrus/genética , Citrus/metabolismo , Almidón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Desarrollo Embrionario
14.
J Org Chem ; 87(1): 835-845, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34962788

RESUMEN

An efficient method for the synthesis of new indolizine-fused chromones has been accomplished from ethyl (E)-3-(2-acetylphenoxy)acrylates and pyridines in a "one-pot" manner. Facile operation in open-air, metal-free, and mild conditions renders this protocol particularly practical and attractive. Moreover, this method can simultaneously construct two molecular fragments of chromone and indolizine. Scale-up experiment and the construction of natural products further prove the practicability of this strategy.


Asunto(s)
Indolizinas , Yodo , Cromonas , Ciclización , Piridinas
15.
Inorg Chem ; 61(29): 11057-11065, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35816327

RESUMEN

For pure acetylene manufacturing and natural gas purification, the development of porous materials displaying highly selective C2H2/CH4 and CO2/CH4 separation is greatly important but remains a major challenge. In this work, a plausible strategy involving solvent-induced effects and using the flexibility of the ligand conformation to make two In(III) metal-organic frameworks (MOFs) is developed, showing topological diversity and different stability. The X-shaped tetracarboxylic ligand H4TPTA ([1,1':3',1″-terphenyl]-4,4',4″,6'-tetracarboxylic acid) was selected to construct two new heteroid In MOFs, namely, {[CH3NH3][In(TPTA)]·2(NMF)} (MOF 1) and {[In2(TPTA)(OH)2]·2(H2O)·(DMF)} (MOF 2). MOF 1 is a (4, 4)-connected net showing a pts topology with a large channel that is not conducive to fine gas separation. By contrast, with the reduction of SBU from uninucleated In to an {In-OH-In}n chain, MOF 2 has a (4, 6)-connected net with the fsc topology with an ∼5 Å suitable micropore to confine matching small gas. The permanent porosity of MOF 2 leads to the preferential adsorption of C2H2 over CO2 with superior C2H2/CH4 (332.3) and CO2/CH4 (31.2) separation selectivities. Meanwhile, the cycling dynamic breakthrough experiments showed that the high-purity C2H2 (>99.8%) capture capacities of MOF 2 were >1.92 mmol g-1 from a binary C2H2/CH4 mixture, and its separation factor reached 10.

16.
Environ Res ; 205: 112455, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863688

RESUMEN

The loss of soil organic phosphorus can easily cause water eutrophication. In order to effectively reduce the loss of soil organic phosphorus, this manuscript investigated the adsorption of soil organic phosphorus by lanthanum modified biochar (BC), traditional adsorbent gypsum (GY) and zeolite (ZE) by taking phytic acid as the representative. The adsorption isotherm model and kinetic models were used to fit the phosphorus absorption characteristics of the adsorbents. The effects of initial pH and temperature on the adsorption capacity were discussed, and the adsorption mechanism of each adsorbent was explained by means of FTIR and XRD. The results showed that the adsorption capacity of phytate phosphorus followed the trend of BCTS > GYTS > ZETS > TS (soil), and the maximum phosphorus adsorption capacity obtained from Langmuir isotherm for treatment with BCTS was 2.836 mg g-1, and the treatment had the strongest affinity for phytate phosphorus and also the ability to store phosphorus. The adsorption process fits well with Langmuir isotherm equation and pseudo-second-order kinetic equation, and the adsorption behavior of phytate phosphorus was mainly controlled by the chemisorption of monolayer. When the concentration of phytate phosphorus was 100 mg L-1, percentage of modified biochar added to the soil was 3% and the pH was 6, the adsorption capacity reached the maximum, and the maximum adsorption capacity was 2.000 mg g-1. The results of FTIR and XRD characterization showed that complexation was the main adsorption mechanism. In this study, the combination of modified biochar and soil phytate phosphorus can provide a good theoretical basis for reducing the loss of soil organic phosphorus.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fósforo/química , Suelo , Contaminantes Químicos del Agua/análisis
17.
Plant Cell Rep ; 41(6): 1403-1415, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35381869

RESUMEN

KEY MESSAGE: Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus sinensis/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento
18.
Sheng Li Xue Bao ; 74(2): 209-216, 2022 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-35503068

RESUMEN

Mounting evidence has shown that exercise exerts extensive beneficial effects, including preventing and protecting against chronic diseases, through improving metabolism and other mechanisms. Recent studies have shown that exercise preconditioning affords significant cardioprotective effects. However, whether exercise preconditioning improves high fat diet (HFD)-induced obesity and lipid metabolic disorder remains unknown. The study was aimed to explore the effects of exercise preconditioning on HFD-induced obesity and lipid metabolic disorder in mice. 4-week-old C57BL/6 mice were subjected to swimming or sedentary control for 3 months, and then were fed with normal diet (ND) or HFD for 4 more months. The results showed that the blood glucose was decreased, and the glucose tolerance and grip strength were increased in exercised mice after training. Exercise preconditioning failed to improve HFD-induced body weight gain, but improved HFD-induced glucose intolerance. Exercise preconditioning showed no significant effects on both exercise capacity and physical activity in ND- and HFD-fed mice. HFD feeding increased total cholesterol and low density lipoprotein (LDL) levels in circulation, promoted subcutaneous fat and epididymal fat accumulation in mice. Exercise preconditioning increased circulating high density lipoprotein (HDL) and decreased circulating LDL, without affecting the subcutaneous fat and epididymal fat in HFD-fed mice. HFD feeding increased liver weight and hepatic total cholesterol contents, and dysregulated the expressions of several mitochondria function-related proteins in mice. These abnormalities were partially reversed by exercise preconditioning. Together, these results suggest that exercise preconditioning can partially reverse the HFD-induced lipid metabolic disorder and hepatic dysfunction, and these beneficial effects of exercise sustain for a period of time, even after exercise is discontinued.


Asunto(s)
Dieta Alta en Grasa , Obesidad , Animales , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos , Hígado , Ratones , Ratones Endogámicos C57BL
19.
Opt Express ; 29(21): 34684-34694, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809252

RESUMEN

Soliton pulsation is one of the most fascinating phenomena in ultrafast fiber lasers, owing to its rich nonlinear dynamics and potential generation of high peak power pulse. However, it is still a challenge to efficiently search for pulsating soliton in fiber lasers because it requires a fine setting of laser cavity parameters. Here, we report the autosetting soliton pulsation in a passively mode-locked fiber laser. The parameters of electronic polarization controller are intelligently adjusted to search for pulsating soliton state by the improved depth-first search algorithm. Moreover, the intensity modulation depth of pulsating soliton could be flexibly controlled. These findings indicate that the intelligent control of a fiber laser is an effective way to explore on-demand soliton dynamics and is also beneficial to the optimization of ultrafast laser performance.

20.
FASEB J ; 34(12): 16552-16566, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33118211

RESUMEN

Human osteoarthritis cartilage contains chondrocytes (OAC) and mesenchymal stromal cells (OA-MSC). Here, we found that TGF-ß had different effects on OA-MSC and OAC, and revealed its lateral signaling mechanism in OA. RNAseq analysis indicated that OA-MSC expressed the same level of Bone Morphogenetic Protein (BMP) Receptor-1A as OAC but only 1/12 of Transforming Growth Factor beta (TGF-ß) Receptor-1. While TGF-ß specifically activated SMAD2 in OAC, it also activated BMP signaling-associated SMAD1 in OA-MSC. While TGF-ß stimulated chondrogenesis in OAC, it induced hypertrophy, mineralization, and MMP-13 in OA-MSC. Inhibiting TGF-ßR1 suppressed MMP-13 in OA-MSC but stimulated it in OAC. In contrast, by specifically targeting BMPR1A/ACVR1 in both cell types, LDN193189 inhibits cartilage degeneration through suppressing hypertrophy and MMP-13 in a mouse osteoarthritis model. Thus, LDN193189, a drug under development to inhibit constitutive BMP signaling during heterotopic ossification, may be re-purposed for OA treatment.


Asunto(s)
Cartílago Articular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis/fisiología , Humanos , Hipertrofia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteína Smad2/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda