Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Small ; : e2405577, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39359023

RESUMEN

Since the inception of the concept of nanozymes, there has been a growing interest in the rational design and controllable synthesis of nanozymes with adjustable activities. In this study, onion-liked carbon (OLC) with remarkable peroxidase-like (POD) activity are developed through delicately controlling the sp2/sp3 configuration. The investigation reveals that enzymatic activity of OLC increases first and then decreases with the increased graphitic degree, with the highest activity observed at a moderate sp2/sp3 ratio of 17.17%. A series of experiments and theoretical calculations are conducted to elucidate the catalytic mechanism, and the structure-dependent activity is attributed to a synergistic effect of surface adsorption and electron transfer processes. The POD activity enables the OLC to catalyze the decomposition of H2O2, producing reactive oxygen species for eradicating Gram-positive and Gram-negative bacteria. Additionally, toxicity tests based on nematode and mouse models confirmed the excellent biocompatibility of OLC. Furthermore, the OLC exhibited antibacterial ability and promoted bacterial-infected wound healing in a mouse model. This work not only gives a deeper understanding of the structure-activity relationship and catalytic mechanism of carbon-based nanozymes, but also unveils a novel avenue for antibacterial therapy and wound healing applications.

2.
Nanotechnology ; 35(35)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38806006

RESUMEN

Artificially synthesized DNA is involved in the construction of a library of oil tracers due to their unlimited number and no-biological toxicity. The strategy of the construction is proposed by oleophilic Silica-encapsulated DNA nanoparticles, which offers fresh thinking in developing novel tracers, sensors, and molecular machines in engineering & applied sciences based on artificially synthesized DNA blocks.


Asunto(s)
ADN , Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , ADN/química , Nanopartículas/química , Aceites/química
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443148

RESUMEN

Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Proteínas F-Box/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/fisiología , Regulación hacia Abajo , Proteínas F-Box/fisiología , Lisosomas/metabolismo , Proteínas de la Membrana/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Respir Res ; 24(1): 260, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898756

RESUMEN

BACKGROUND: Severe asthma is associated with substantial mortality and has unmet therapeutic need. A subset of severe asthma is characterized by neutrophilic airway inflammation. Classically activated (or M1) macrophages which express IL-12 and IL-23 are associated with airway neutrophilia in asthma. Exogenous IL-25 was reported to suppress intestinal inflammation in animal models of inflammatory bowel diseases via suppressing IL-12 and IL-23 production. We hypothesize that IL-25 ameliorates airway neutrophilia via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23 in asthma. METHODS: In a mouse model of neutrophil-dominant allergic airway inflammation, the effect of mouse recombinant IL-25 on airway inflammation were assessed by H&E staining and bronchoalveolar lavage (BAL) cell counting. The percentage of M1 macrophages in lung tissue and BAL cells were analyzed by flow cytometry. Quantitative PCR and immunostaining were performed to measure the expression of Il12, Il23, and inflammatory cytokines. Mechanistic experiments were performed in primary culture of macrophages from mouse lungs. The expression of IL-12, IL-23 and IL-25 in sputum was analyzed in a cohort of severe asthma and subjects with eosinophilic or non-eosinophilic asthma. RESULTS: Intranasal administration of IL-25 markedly decreased the number of neutrophils in BAL cells in a murine model of neutrophil-dominant allergic airway inflammation. Moreover, exogenous IL-25 decreased the number of M1 macrophages, and reduced the expression of IL-12, IL-23 in the lungs of the mouse model. Exogenous IL-25 also inhibited the expression of inflammatory cytokines IL-1ß, IFN-γ, TNF-α and IL-17 A. In vitro, IL-25 suppressed IL-12 and IL-23 expression in lipopolysaccharide (LPS)-stimulated primary culture of mouse pulmonary macrophages. Mechanistically, IL-25 inhibited LPS-induced c-Rel translocation to nucleus via STAT3-dependent signaling. In a cohort of severe asthma, IL-25 protein levels in sputum were significantly lower than control subjects. The transcript levels of IL-12 and IL-23 were increased whereas IL-25 transcripts were decreased in sputum cells from subjects with non-eosinophilic asthma compared to eosinophilic asthma. CONCLUSIONS: IL-25 expression is downregulated in subjects with severe or non-eosinophilic asthma. Exogenous IL-25 ameliorates airway neutrophilia, at least in part, via inhibiting macrophage M1 polarization and the expression of IL-12 and IL-23.


Asunto(s)
Asma , Interleucina-12 , Humanos , Animales , Ratones , Interleucina-12/uso terapéutico , Interleucina-17 , Lipopolisacáridos , Asma/tratamiento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Inflamación , Macrófagos Alveolares/metabolismo , Interleucina-23/uso terapéutico
5.
COPD ; 20(1): 101-108, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36656660

RESUMEN

Chronic obstructive pulmonary disease (COPD) and asthma are chronic inflammatory diseases of the airways. Galectin-13 has recently been forwarded as a biomarker for airway eosinophilic inflammation in asthma. However, the association between galectin-13 and COPD remains unknown. To examine the changes in galectin-13 expression in acute exacerbations of COPD (AECOPD) and the stable phase of COPD and unveil the association between galectin-13 expression and eosinophilic inflammation in COPD, we measured plasma galectin-13 expression in different phases of COPD patients (n = 60, 44 AECOPD patients, and 16 stable COPD patients) and healthy controls (n = 15). Plasma levels of galectin-13 in 60 COPD patients were further analyzed and compared to systemic inflammation, airway eosinophilic inflammation, and lung function. The plasma galectin-13 level was markedly increased in subjects with AECOPD compared to stable COPD patients and healthy controls. Plasma galectin-13 levels in COPD subjects were positively correlated with serum CRP (rs = 0.46, p = 0.0003), peripheral blood eosinophilia count (rs = 0.57, p<0.0001), and FeNO (rs = 0.46, p = 0.0002). In addition, the level of galectin-13 was negatively correlated with FEV1 (rs = -0.43, p = 0.0001), FEV1 pred (%) (rs = -0.544, p<0.0001), as well as FEV1/FVC (rs = -0.46, p<0.0001). Multiple linear regression analysis suggested that plasma galectin-13 levels were affected by FEV1 pred (%), peripheral blood eosinophilia count, and FeNO. We concluded that galectin-13 levels were increased in COPD patients, and elevated galectin-13 expressions related to airway eosinophilic inflammation. Galectin-13 may facilitate the identification of COPD endotypes and may become a potential therapeutic target.


Asunto(s)
Asma , Eosinofilia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Asma/complicaciones , Inflamación , Galectinas
6.
Am J Respir Cell Mol Biol ; 67(5): 539-549, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35930423

RESUMEN

Activation of IL-4R (IL-4 receptor) signaling in airway epithelial cells leads to airway hyperresponsiveness and mucus overproduction in asthma. CDH26 (cadherin-26), a cadherin implicated in the polarization of airway epithelial cells, is upregulated in asthma. However, the role of CDH26 in asthma remains unknown. In this study, we demonstrated that Cdh26 deficiency significantly reduced airway mucus overproduction, airway hyperresponsiveness, and airway eosinophilia in a murine model of allergic airway disease. Interestingly, allergen-induced Il-4Rα upregulation in airway epithelium was markedly reduced in Cdh26-/- mice. In cultured human bronchial epithelial cells, CDH26 knockdown inhibited IL-13, a ligand for IL-4R; induced IL-4Rα and IL-13Rα1 (IL-13 receptor α1) upregulation; and suppressed downstream Jak1 (Janus kinase 1) and Stat6 (signal transducer and activator of transcription 6) phosphorylation. Moreover, CDH26 knockdown inhibited IL-13-induced MUC5AC and eosinophilic chemokine expression. These results suggest that CDH26 plays a key role in epithelial IL-4R signaling activation and downstream effectors. In contrast, CDH26 overexpression amplified IL-13-activated IL-4R signaling in BEAS-2B cells. In the airway epithelium of patients with asthma, IL-4Rα expression was elevated, and CDH26 was the only cadherin that was upregulated among 11 cadherin family members. CDH26 expression was strongly correlated with epithelial IL-4Rα and MUC5AC expression, sputum eosinophilia, and fractional exhaled nitric oxide in patients with asthma. Taken together, we identified CDH26 as a key regulator of epithelial IL-4R signaling in asthma and a potential therapeutic target for IL-4R-mediated allergic diseases.


Asunto(s)
Asma , Eosinofilia , Hipersensibilidad , Humanos , Ratones , Animales , Interleucina-13 , Receptores de Interleucina-4 , Asma/metabolismo , Hipersensibilidad/metabolismo , Cadherinas
7.
Respir Res ; 23(1): 17, 2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093061

RESUMEN

BACKGROUND: Type 2-high asthma is a prominent endotype of asthma which is characterized by airway eosinophilic inflammation. Airway epithelial cells play a critical role in the pathogenesis of asthma. Our previous miRNA profiling data showed that miR-30a-3p was downregulated in bronchial epithelial cells from asthma patients. We hypothesize that epithelial miR-30a-3p plays a role in asthma airway inflammation. METHODS: We measured miR-30a-3p expression in bronchial brushings of asthma patients (n = 51) and healthy controls (n = 16), and analyzed the correlations between miR-30a-3p expression and airway eosinophilia. We examined whether Runt-related transcription factor 2 (RUNX2) was a target of miR-30a-3p and whether RUNX2 bound to the promoter of high mobility group box 1 (HMGB1) by using luciferase reporter assay and chromatin immunoprecipitation (ChIP)-PCR. The role of miR-30a-3p was also investigated in a murine model of allergic airway inflammation. RESULTS: We found that miR-30a-3p expression were significantly decreased in bronchial brushings of asthma patients compared to control subjects. Epithelial miR-30a-3p expression was negatively correlated with parameters reflecting airway eosinophilia including eosinophils in induced sputum and bronchial biopsies, and fraction of exhaled nitric oxide in asthma patients. We verified that RUNX2 is a target of miR-30a-3p. Furthermore, RUNX2 bound to the promoter of HMGB1 and upregulated HMGB1 expression. RUNX2 and HMGB1 expression was both enhanced in airway epithelium and was correlated with each other in asthma patients. Inhibition of miR-30a-3p enhanced RUNX2 and HMGB1 expression, and RUNX2 overexpression upregulated HMGB1 in BEAS-2B cells. Intriguingly, airway overexpression of mmu-miR-30a-3p suppressed Runx2 and Hmgb1 expression, and alleviated airway eosinophilia in a mouse model of allergic airway inflammation. CONCLUSIONS: Epithelial miR-30a-3p could possibly target RUNX2/HMGB1 axis to suppress airway eosinophilia in asthma.


Asunto(s)
Asma/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Eosinofilia/genética , Regulación de la Expresión Génica , Proteína HMGB1/genética , Inflamación/genética , MicroARNs/genética , Animales , Asma/complicaciones , Asma/patología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Modelos Animales de Enfermedad , Eosinofilia/complicaciones , Eosinofilia/patología , Femenino , Proteína HMGB1/biosíntesis , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , MicroARNs/biosíntesis , Esputo/metabolismo , Regulación hacia Arriba
8.
BMC Womens Health ; 22(1): 292, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840928

RESUMEN

BACKGROUND: Owing to the high morbidity and mortality, ovarian cancer has seriously endangered female health. Development of reliable models can facilitate prognosis monitoring and help relieve the distress. METHODS: Using the data archived in the TCPA and TCGA databases, proteins having significant survival effects on ovarian cancer patients were screened by univariate Cox regression analysis. Patients with complete information concerning protein expression, survival, and clinical variables were included. A risk model was then constructed by performing multiple Cox regression analysis. After validation, the predictive power of the risk model was assessed. The prognostic effect and the biological function of the model were evaluated using co-expression analysis and enrichment analysis. RESULTS: 394 patients were included in model construction and validation. Using univariate Cox regression analysis, we identified a total of 20 proteins associated with overall survival of ovarian cancer patients (p < 0.01). Based on multiple Cox regression analysis, six proteins (GSK3α/ß, HSP70, MEK1, MTOR, BAD, and NDRG1) were used for model construction. Patients in the high-risk group had unfavorable overall survival (p < 0.001) and poor disease-specific survival (p = 0.001). All these six proteins also had survival prognostic effects. Multiple Cox regression analysis demonstrated the risk model as an independent prognostic factor (p < 0.001). In receiver operating characteristic curve analysis, the risk model displayed higher predictive power than age, tumor grade, and tumor stage, with an area under the curve value of 0.789. Analysis of co-expressed proteins and differentially expressed genes based on the risk model further revealed its prognostic implication. CONCLUSIONS: The risk model composed of GSK3α/ß, HSP70, MEK1, MTOR, BAD, and NDRG1 could predict survival prognosis of ovarian cancer patients efficiently and help disease management.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Pronóstico , ARN Largo no Codificante/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
9.
Postgrad Med J ; 98(1166): 906-913, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37063013

RESUMEN

BACKGROUND: Several predictors of COVID-19 severity have been reported. However, chronic airway inflammation characterised by accumulated lymphocytes or eosinophils may affect the pathogenesis of COVID-19. METHODS: In this retrospective cohort study, we reviewed the medical records of all patients with laboratory-confirmed COVID-19 with chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma admitted to the Sino-French New City Branch of Tongji Hospital, a large regional hospital in Wuhan, China, from 26 January to 3 April. The Tongji Hospital Ethics Committee approved this study. RESULTS: There were 59 patients with chronic bronchitis, COPD and asthma. When compared with non-severe patients, severe patients were more likely to have decreased lymphocyte counts (0.6×109/L vs 1.1×109/L, p<0.001), eosinopaenia (<0.02×109/L; 73% vs 24%, p<0.001), increased lactate dehydrogenase (LDH) (471.0 U/L vs 230.0 U/L, p<0.001) and elevated interleukin 6 level (47.4 pg/mL vs 5.7 pg/mL, p=0.002) on admission. Eosinopaenia and elevated LDH were significantly associated with disease severity in both univariate and multivariate regression models including the above variables. Moreover, eosinophil count and LDH level tended to return to normal range over time in both groups after treatment and severe patients recovered slower than non-severe patients, especially in eosinophil count. CONCLUSIONS: Eosinopaenia and elevated LDH are potential predictors of disease severity in patients with COVID-19 with underlying chronic airway diseases. In addition, they could indicate disease progression and treatment effectiveness.


Asunto(s)
Asma , Bronquitis Crónica , COVID-19 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Asma/complicaciones , Bronquitis Crónica/patología , COVID-19/complicaciones , Eosinófilos , Inflamación/patología , Lactato Deshidrogenasas , Estudios Retrospectivos
10.
Clin Exp Allergy ; 51(12): 1566-1576, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34075657

RESUMEN

BACKGROUND: Airway eosinophilic inflammation is a central feature in asthma which is mainly driven by type 2 response. The expression of galectin-13 was up-regulated in a parasitic infection model which is also characterized by type 2 immune response. We hypothesized that galectin-13 may be involved in airway eosinophilic inflammation in asthma. OBJECTIVE: To unveil the role of galectin-13 in asthma airway inflammation. METHODS: We measured galectin-13 expressions in bronchial brushings, sputum, and plasma of asthma patients (n = 54) and healthy controls (n = 15), and analysed the correlations between galectin-13 expression and airway eosinophilia. We used human bronchial epithelial cell line 16HBE to investigate the possible mechanism by which galectin-13 participates in eosinophilic inflammation. RESULTS: The expression of galectin-13 was markedly increased in subjects with asthma compared to controls. Epithelial galectin-13 mRNA levels in asthmatic subjects were strongly correlated with eosinophilic airway inflammation (the percentage of sputum eosinophils, the number of eosinophils in bronchial submucosa and FeNO) and the expression of Th2 signature genes (CLCA1, POSTN and SERPINB2). Inhaled corticosteroid (ICS) treatment reduced plasma galectin-13 levels, and baseline plasma galectin-13 levels reflect the response to ICS treatment. In cultured 16HBE cells, knockdown of galectin-13 suppressed IL-13-stimulated MCP-1 and eotaxin-1 expression by inhibiting the activation of EGFR and ERK. CONCLUSIONS & CLINICAL RELEVANCE: Galectin-13 is a novel marker for airway eosinophilia in asthma, and may contribute to allergic airway eosinophilic inflammation by up-regulating the expression of MCP-1 and eotaxin-1. Plasma galectin-13 levels may be useful for predicting responses to ICS treatment.


Asunto(s)
Asma , Eosinofilia , Galectinas/metabolismo , Proteínas Gestacionales/metabolismo , Asma/tratamiento farmacológico , Eosinofilia/genética , Eosinófilos/metabolismo , Humanos , Inflamación/metabolismo , Esputo/metabolismo
11.
Cancer Cell Int ; 21(1): 249, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33952262

RESUMEN

BACKGROUND: Ovarian cancer has greatly endangered and deteriorated female health conditions worldwide. Refinement of predictive biomarkers could enable patient stratification and help optimize disease management. METHODS: RAD51 expression profile, target-disease associations, and fitness scores of RAD51 were analyzed in ovarian cancer using bioinformatic analysis. To further identify its role, gene enrichment analysis was performed, and a regulatory network was constructed. Survival analysis and drug sensitivity assay were performed to evaluate the effect of RAD51 expression on ovarian cancer prognosis. The predictive value of RAD51 was then confirmed in a validation cohort immunohistochemically. RESULTS: Ovarian cancer expressed more RAD51 than normal ovary. RAD51 conferred ovarian cancer dependency and was associated with ovarian cancer. RAD51 had extensive target-disease associations with various diseases, including ovarian cancer. Genes that correlate with and interact with RAD51 were involved in DNA damage repair and drug responsiveness. High RAD51 expression indicated unfavorable survival outcomes and resistance to platinum, taxane, and PARP inhibitors in ovarian cancer. In the validation cohort (126 patients), high RAD51 expression indicated platinum resistance, and platinum-resistant patients expressed more RAD51. Patients with high RAD51 expression had shorter OS (HR = 2.968, P < 0.0001) and poorer PFS (HR = 2.838, P < 0.0001). RAD51 expression level was negatively correlated with patients' survival length. CONCLUSIONS: Ovarian cancer had pronounced RAD51 expression and RAD51 conferred ovarian cancer dependency. High RAD51 expression indicated poor survival and decreased drug sensitivity. RAD51 has predictive value in ovarian cancer and can be exploited as a predictive biomarker.

12.
J Cell Biochem ; 121(2): 1973-1985, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31692041

RESUMEN

Colon cancer is a member of malignant tumors in the digestive system. Traditional treatment strategies are ineffective and improving the treatment of colon cancer is an urgent need. Targeting programmed cell death-1 (PD-1) by monoclonal antibodies has shown some therapeutic effectiveness and has advantages. Additionally, the Stat3 inhibitor nifuroxazide was employed to promote the antitumor activity. Here, we hypothesized that combining nifuroxazide with PD-1 small interfering RNA carried by attenuated Salmonella would exert a synergistic antitumor effect on colon cancer. Indeed, treatment with this combination effectively inhibited the development of colon cancer in mice and improved the survival rate. These two novel anticancer agents worked synergistically to elicit potent antitumor immunity and achieve improved therapeutic efficacy. The underlying mechanisms are mainly involved with immune regulation and cell apoptosis. This study provides a previous framework for combining this Stat3 inhibitor with RNAi designed to block immune checkpoint signaling for cancer therapy.


Asunto(s)
Neoplasias del Colon/terapia , Hidroxibenzoatos/farmacología , Nitrofuranos/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , ARN Interferente Pequeño/administración & dosificación , Salmonella/química , Animales , Antiinfecciosos/farmacología , Apoptosis , Movimiento Celular , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Terapia Combinada , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Receptor de Muerte Celular Programada 1/genética , ARN Interferente Pequeño/genética , Salmonella/genética , Salmonella/crecimiento & desarrollo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Clin Exp Allergy ; 50(1): 29-40, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31520422

RESUMEN

BACKGROUND: microRNA (miR)-218-5p is involved in cigarette smoke-induced airway inflammation. In our earlier asthma epithelial miRNA profiling data, miR-218-5p was the top 2 down-regulated miRNA. We hypothesize that miR-218-5p plays a role in asthma airway inflammation. OBJECTIVE: To unveil the role of miR-218-5p and its target gene in asthma airway inflammation. METHODS: We measured miR-218-5p expression in bronchial brushings of asthma patients (n = 50) and healthy controls (n = 15), and analysed the correlations between miR-218-5p expression and airway eosinophilia. We examined whether CTNND2 was a target of miR-218-5p, and the expression of 12 catenin family members in bronchial brushings, in cultured human bronchial epithelial (HBE) cells and BEAS-2B cells. We explored the role of miR-218-5p-CTNND2 pathway using a murine model of allergic airway inflammation. RESULTS: Epithelial miR-218-5p expression was significantly decreased and negatively correlated with eosinophils in induced sputum and bronchial biopsies, and other type 2 biomarkers in asthma patients. We verified that CTNND2 (encoding δ-catenin) was a target of miR-218-5p. Remarkably, CTNND2 was the most significantly up-regulated catenin compared with the other 11 catenin family members in bronchial brushings of asthma patients, IL-13-stimulated HBE and BEAS-2B cells. Moreover, epithelial CTNND2 expression positively correlated with airway eosinophilia in asthma. Airway mmu-miR-218-5p expression was also decreased, and Ctnnd2 expression was increased in a murine model of allergic airway inflammation. Intriguingly, mmu-miR-218-5p overexpression suppressed airway hyperresponsiveness, eosinophilic airway inflammation and Ctnnd2 up-regulation in the mouse model. Finally, perturbation of miR-218-5p or CTNND2 expression significantly altered chemokine CCL26 expression in the cell cultures and the mouse model. CONCLUSIONS AND CLINICAL RELEVANCE: Epithelial miR-218-5p plays a protective role in eosinophilic airway inflammation via targeting CTNND2, a novel catenin in asthma, and suppressing chemokine CCL26 expression.


Asunto(s)
Asma/genética , Cateninas/genética , Quimiocina CCL26/metabolismo , Eosinofilia/genética , MicroARNs/genética , Animales , Asma/metabolismo , Bronquios/metabolismo , Estudios de Casos y Controles , Línea Celular , Células Cultivadas , Quimiocina CCL11/metabolismo , Quimiocina CCL24/metabolismo , Eosinofilia/metabolismo , Expresión Génica , Humanos , Ratones , Catenina delta
14.
Respir Res ; 21(1): 146, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32527255

RESUMEN

BACKGROUND: Older age and elevated d-dimer are reported risk factors for coronavirus disease 2019 (COVID-19). However, whether early radiographic change is a predictor of fatality remains unknown. METHODS: We retrospectively reviewed records of all laboratory-confirmed patients admitted to a quarantine unit at Tongji Hospital, a large regional hospital in Wuhan, China, between January 31 and March 5, 2020. Confirmed cases were defined by positive RT-PCR detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in throat-swab specimens. Chest CT images were reviewed independently by two radiologists. The Tongji Hospital ethics committee approved this study. RESULTS: A total of 102 patients were confirmed to have SARS-CoV-2 infection. As of March 25, 85 confirmed patients were discharged, 15 died, and 2 remained hospitalized. When compared with survivors, non-survivors were older (median age, 69 [interquartile range, 58-77] vs. 55 [44-66], p = 0.003), and more likely to have decreased lymphocyte count (0.5 vs. 0.9 ×  109/L, p = 0.006), elevated lactate dehydrogenase (LDH) (569.0 vs. 272.0 U/L, p < 0.001), elevated d-dimer (> 1 µg/mL, 86% vs. 37%, p = 0.002) on admission. Older age and elevated LDH were independent risk factors for fatality in a multivariate regression model included the above variables. In a subset of patients with CT images within the first week, higher total severity score, and more involved lung lobes (5 involved lobes) in CT images within the first week were significantly associated with fatality. Moreover, in this subset of patients, higher total severity score was the only independent risk factor in a multivariate analysis incorporating the above mentioned variables. CONCLUSIONS: Older age, elevated LDH on admission, and higher severity score of CT images within the first week are potential predictors of fatality in adults with COVID-19. These predictors may help clinicians identify patients with a poor prognosis at an early stage.


Asunto(s)
Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico por imagen , Infecciones por Coronavirus/mortalidad , Mortalidad Hospitalaria/tendencias , Pandemias/estadística & datos numéricos , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/mortalidad , Radiografía Torácica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Análisis de Varianza , COVID-19 , Prueba de COVID-19 , China , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Bases de Datos Factuales , Progresión de la Enfermedad , Femenino , Hospitalización/estadística & datos numéricos , Hospitales Públicos , Humanos , Unidades de Cuidados Intensivos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/terapia , Valor Predictivo de las Pruebas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Análisis de Supervivencia
15.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L245-L254, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382768

RESUMEN

Serine peptidase inhibitor, clade B, member 10 (SERPINB10) expression is increased in IL-13-stimulated human bronchial epithelial cells and in a murine model of allergic airway inflammation. However, the role of SERPINB10 in asthma remains unknown. We examined the association between epithelial SERPINB10 expression and airway eosinophilia in subjects with asthma and the role of Serpinb10 in allergic airway inflammation in an animal model. Epithelial SERPINB10 mRNA and protein expression were markedly increased in subjects with asthma ( n = 60) compared with healthy controls ( n = 25). Epithelial SERPINB10 mRNA levels were significantly correlated with airway hyperresponsiveness (AHR) and three parameters reflecting airway eosinophilia including the percentage of sputum eosinophils, the number of eosinophils in bronchial submucosa, and fraction of exhaled nitric oxide in subjects with asthma. Moreover, epithelial SERPINB10 expression was strongly correlated with the epithelial gene signature ( CLCA1, POSTN, and SERPINB2) for type 2 status. In normal human bronchial epithelial cells cultured at air-liquid interface, knockdown of SERPINB10 suppressed IL-13-stimulated periostin (encoded by POSTN) and CCL26 (eotaxin-3) expression by inhibiting the activation of p38 MAPK. Epithelial CCL26 mRNA levels were correlated with SERPINB10 expression in subjects with asthma. Airway knockdown of Serpinb10 alleviated AHR, airway eosinophilia and the expression of periostin and Ccl26 in a murine model of allergic airway disease. Taken together, epithelial SERPINB10 is a novel marker for airway eosinophilia in asthma. Epithelial SERPINB10 contributes to allergic airway eosinophilic inflammation, at least in part, by regulating the expression of periostin and CCL26.


Asunto(s)
Asma/metabolismo , Bronquios/metabolismo , Células Epiteliales/metabolismo , Eosinofilia Pulmonar/metabolismo , Serpinas/metabolismo , Adulto , Animales , Asma/patología , Bronquios/patología , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Quimiocina CCL26/biosíntesis , Quimiocina CCL26/genética , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Eosinófilos/patología , Células Epiteliales/patología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Eosinofilia Pulmonar/patología , Serpinas/genética
16.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L253-L264, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29644894

RESUMEN

Airway eosinophilic inflammation is a key feature of type 2 high asthma. The role of epithelial microRNA (miR) in airway eosinophilic inflammation remains unclear. We examined the expression of miR-221-3p in bronchial brushings, induced sputum, and plasma from 77 symptomatic, recently diagnosed, steroid-naive subjects with asthma and 36 healthy controls by quantitative PCR and analyzed the correlation between miR-221-3p expression and airway eosinophilia. We found that epithelial, sputum, and plasma miR-221-3p expression was significantly decreased in subjects with asthma. Epithelial miR-221-3p correlated with eosinophil in induced sputum and bronchial biopsies, fraction of exhaled nitric oxide, blood eosinophil, epithelial gene signature of type 2 status, and methacholine provocative dosage required to cause a 20% decline in forced expiratory volume in the first second in subjects with asthma. Sputum miR-221-3p also correlated with airway eosinophilia and was partially restored after inhaled corticosteroid treatment. Inhibition of miR-221-3p expression suppressed chemokine (C-C motif) ligand (CCL) 24 (eotaxin-2), CCL26 (eotaxin-3), and periostin (POSTN) expression in BEAS-2B bronchial epithelial cells. We verified that chemokine (C-X-C motif) ligand (CXCL) 17, an anti-inflammatory chemokine, is a target of miR-221-3p, and epithelial CXCL17 expression significantly increased in asthma. CXCL17 inhibited CCL24, CCL26, and POSTN expression via the p38 MAPK pathway. Airway overexpression of miR-221-3p exacerbated airway eosinophilic inflammation, suppressed CXCL17 expression, and enhanced CCL24, CCL26, and POSTN expression in house dust mite-challenged mice. Taken together, epithelial and sputum miR-221-3p are novel biomarkers for airway eosinophilic inflammation in asthma. Decreased epithelial miR-221-3p may protect against airway eosinophilic inflammation by upregulating anti-inflammatory chemokine CXCL17.


Asunto(s)
Asma/sangre , Quimiocinas/sangre , Eosinófilos/metabolismo , MicroARNs/sangre , Mucosa Bucal/metabolismo , Esputo/metabolismo , Regulación hacia Arriba , Adulto , Asma/patología , Biomarcadores/sangre , Moléculas de Adhesión Celular/sangre , Línea Celular , Quimiocina CCL24/sangre , Quimiocina CCL26/sangre , Quimiocinas CXC , Eosinófilos/patología , Femenino , Humanos , Inflamación/sangre , Inflamación/patología , Sistema de Señalización de MAP Quinasas , Masculino , Mucosa Bucal/patología , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672915

RESUMEN

Pre-harvest bagging can improve fruit color and protects against diseases. However, it was discovered that improper bagging times could lead to peel browning in production. Using the Ruixue apple variety as the research model, a study was conducted to compare the external and internal quality of fruits bagged at seven different timings between 50 and 115 days after full bloom (DAFB). Our findings indicate that delaying the bagging time can reduce the occurrence of peel browning in Ruixue apples. Compared to the control, the special bag reduced the browning index by 22.95%. However, the fruit point index of Ruixue fruits increased by 65.05% at 115 DAFB compared to 50 DAFB when bagging was delayed. The chlorophyll content of Ruixue fruits in special bags generally increased and then decreased, with the highest chlorophyll content of Ruixue fruits in special bags at 90 DAFB, which was 26.02 mg·kg-1. When the bagging process was delayed, the soluble solids, total phenols, and flavonoids content in the fruits increased, while the number of control volatiles decreased by 10. After two years of testing, results show that using special fruit bags at 90 DAFB bagging can significantly improve the fruit quality of Ruixue apple.

18.
Lab Med ; 55(1): 96-102, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-37267076

RESUMEN

OBJECTIVE: The aim of this study was to compare metagenomic next-generation sequencing (mNGS) with other methods, including Xpert MTB/RIF, Mycobacterium tuberculosis (MTB) culture, and acid-fast bacillus (AFB) staining in the diagnosis of pulmonary tuberculosis (PTB) using bronchoalveolar lavage fluid (BALF). METHODS: The data of 186 patients with suspected PTB were retrospectively collected from January 2020 to May 2021 at Tongji Hospital. BALF samples were collected from all patients and analyzed using AFB staining, MTB culture, Xpert MTB/RIF, and mNGS. RESULTS: Of the 186 patients, 38 patients were ultimately diagnosed as PTB. Metagenomic next-generation sequencing exhibited a sensitivity of 78.95%, which was higher than AFB staining (27.59%) and MTB culture (44.12%) but similar to Xpert MTB/RIF (72.73%). Utilization of combined methods demonstrates improvement for PTB diagnosis. In support of this, the area under the receiver operating characteristic curve for the combination of mNGS and MTB culture (0.933, 95% CI: 0.871, 0.995) was larger than those of mNGS, Xpert MTB/RIF, MTB culture, and the combination of Xpert MTB/RIF and MTB culture. CONCLUSION: The sensitivity of mNGS in the diagnosis of PTB using BALF specimen is similar to Xpert MTB/RIF. Metagenomic next-generation sequencing in combination with MTB culture may further improve the diagnosis of pulmonary tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Humanos , Líquido del Lavado Bronquioalveolar/microbiología , Estudios Retrospectivos , Sensibilidad y Especificidad , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Mycobacterium tuberculosis/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Esputo/microbiología
19.
Biomed Opt Express ; 15(5): 3076-3091, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855692

RESUMEN

This research presents a novel approach for the dynamic monitoring of onion-like carbon nanoparticles inside colorectal cancer cells. Onion-like carbon nanoparticles are widely used in photothermal cancer therapy, and precise 3D tracking of their distribution is crucial. We proposed a limited-angle digital holographic tomography technique with unsupervised learning to achieve rapid and accurate monitoring. A key innovation is our internal learning neural network. This network addresses the information limitations of limited-angle measurements by directly mapping coordinates to measured data and reconstructing phase information at unmeasured angles without external training data. We validated the network using standard SiO2 microspheres. Subsequently, we reconstructed the 3D refractive index of onion-like carbon nanoparticles within cancer cells at various time points. Morphological parameters of the nanoparticles were quantitatively analyzed to understand their temporal evolution, offering initial insights into the underlying mechanisms. This methodology provides a new perspective for efficiently tracking nanoparticles within cancer cells.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38679867

RESUMEN

Ion channels play a crucial role in the transmembrane transport and signal transmission of substances. In animals, transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) serve as temperature-sensing units in sensory nerve endings. TRPV1 allows cells to sense heat, while TRPM8 enables them to detect cold, both serving to protect living organisms from harmful substances and environments. However, almost all studies on artificial nanochannels have mainly focused on TRPV1-like "forward nanochannels" thus far, which are incapable of "backward" responding to heat. So, we constructed an innovational TRPM8-inspired "retrorse nanochannel" through internal modification of poly(acrylamide-co-acrylonitrile) [P(AAm-co-AN)] with an upper critical solution temperature (UCST). Our results demonstrated that the internally modified nanochannels exhibited rapid, stable, and reversible heat-closing capability and converse temperature dependence within the typical temperature range of 25-40 °C. The biomimetic ion channel can effectively function as a facile, precise, and reversible thermal gate for controlling the transport of ions and substances. It also offers a promising microscopic technology for managing thermal effects on the substance, fluid, energy, and even signal delivery.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda