Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell Mol Biol Lett ; 26(1): 33, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238213

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. METHODS: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. RESULTS: UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. CONCLUSIONS: UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


Asunto(s)
MicroARNs/metabolismo , Cadenas Pesadas de Miosina/metabolismo , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Animales , Apoptosis/fisiología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Biología Computacional/métodos , Bases de Datos Genéticas , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Cadenas Pesadas de Miosina/genética , ARN Largo no Codificante/sangre , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Biochem Biophys ; 81(1): 59-68, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36324030

RESUMEN

Aerobic glycolysis, also known as the Warburg effect, has emerged as a hallmark of cancer and is associated with tumor progression and unfavorable clinical outcomes in cancer patients. PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase that functions as a tumor suppressor in a variety of human cancers. However, the relationship between PP2A and the Warburg effect in gastric cancer has yet to be fully understood. In this study, the expression profile of two endogenous inhibitors of PP2A, SET and CIP2A, in gastric cancer, were analyzed by real-time quantitative polymerase chain reaction. Loss-of-function and gain-of-function studies were performed to investigate the roles of PP2A in gastric cancer cell proliferation and glycolysis. Cell biological, molecular, and biochemical approaches were employed to uncover the underlying mechanisms. The results showed that SET and CIP2A were overexpressed in gastric cancer and associated with a decreased PP2A activity. Pharmacological activation of PP2A with FTY-720 and DT-061 in two gastric cancer cell lines significantly reduced gastric cancer cell proliferation and glycolytic ability. Importantly, inhibition of PP2A activity by genetic silencing of PPP2R5A resulted in a growth advantage, which can be largely compromised by the addition of the glycolysis inhibitor 2-Deoxy-D-glucose, suggesting a glycolysis-dependent effect of PP2A in gastric cancer. Mechanistically, the well-known transcription factor and glycolysis regulator c-Myc was discovered as the functional mediator of PP2A in regulating cell glycolysis. Ectopic expression of a phosphorylation-mutant c-Myc resistant to PP2A (MycT58A) restored the inhibitory effect of FTY-720 and DT-061 on lactate production and glucose uptake. Furthermore, there was a close association between SET and CIP2A expression and c-Myc gene signatures in gastric cancer samples. Collectively, this study provides strong evidence of the involvement of PP2A in the Warburg effect and indicates that it could be a novel antitumor strategy to target tumor metabolism in gastric cancer.


Asunto(s)
Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-myc , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular , Clorhidrato de Fingolimod/farmacología , Glucólisis , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Neoplasias Gástricas/genética
3.
Cancer Manag Res ; 12: 12769-12778, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335427

RESUMEN

BACKGROUND: The role of kinesin superfamily proteins (KIFs) has been reported in a variety of tumors and KIFs contributed to the proliferation of cancer cells. But few studies were focus on colon adenocarcinoma. METHODS: Through bioinformatics analysis and immunohistochemistry (IHC) assays, the expression of KIF18B in colon adenocarcinoma tissues was determined. Stable KIF18B-depleted cell lines were constructed using lentivirus-mediated shRNA of KIF18B. Cell colony formation assay and CCK8 assay were performed to assess cell proliferation degree, and the expression level of KI67 and PCNA was used to indicate cell proliferation in vitro and verified using xenograft tumors in vivo. RESULTS: KIF18B is highly expressed in colon adenocarcinoma tissues and has a negative correlation with the prognosis and tumor grade of colon adenocarcinoma. Interfering with KIF18B inhibits cell proliferation in vitro and in vivo. CONCLUSION: KIF18B can be used as a prognostic marker for colon adenocarcinoma and may be a therapeutic target for colon adenocarcinoma treatment.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda