Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Pharm ; 356(1-2): 12-8, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18272304

RESUMEN

The objective of the present study was to investigate the reliability of transporter inhibitors in the elucidation of drug-transporter interactions when multiple transporters are present in a test system. The bidirectional permeabilities of digoxin, estrone-3-sulfate (E3S), and sulfasalazine, substrates of P-gp, BCRP/MRP2 and unspecified efflux transporters, respectively, were examined in Caco-2 and MDR-MDCK cells in the absence and presence of transporter inhibitors: CsA (P-gp), FTC (BCRP) and MK571 (MRP). Digoxin showed significant efflux ratios (ER) in both Caco-2 (ER=17) and MDR-MDCK (ER=120), whereas E3S and sulfasalazine only showed significant efflux in Caco-2 (ER=15 and 88, respectively) but not in MDR-MDCK cells (ER=1.1 and 1.3, respectively). CsA at 10 microM showed complete inhibition of digoxin efflux, partial inhibition of E3S efflux and no effect on sulfasalazine efflux. FTC and MK571 had different inhibitory effects on the efflux of these compounds. The present study shows evidence of the functional expression of multiple efflux transporter systems in Caco-2 cells. Although the use of Caco-2 cells and selected inhibitors of efflux transporters can provide useful mechanistic information on drug-drug interactions involving efflux transporters, the potential cross-reaction of inhibitors with multiple transporters makes it difficult to discern the role of individual transporters in drug transport or drug-drug interactions.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/efectos de los fármacos , Proteínas de Neoplasias/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Línea Celular , Ciclosporina/farmacología , Digoxina/farmacocinética , Perros , Interacciones Farmacológicas , Estrona/análogos & derivados , Estrona/farmacocinética , Humanos , Indoles/farmacología , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Permeabilidad/efectos de los fármacos , Propionatos/farmacología , Quinolinas/farmacología , Sulfasalazina/farmacocinética
2.
Front Pharmacol ; 4: 79, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23847534

RESUMEN

Physiologically relevant sources of absorptive intestinal epithelial cells are crucial for human drug transport studies. Human adenocarcinoma-derived intestinal cell lines, such as Caco-2, offer conveniences of easy culture maintenance and scalability, but do not fully recapitulate in vivo intestinal phenotypes. Additional sources of renewable physiologically relevant human intestinal cells would provide a much needed tool for drug discovery and intestinal physiology. We compared two alternative sources of human intestinal cells, commercially available primary human intestinal epithelial cells (hInEpCs) and induced pluripotent stem cell (iPSC)-derived intestinal cells to Caco-2, for use in in vitro transwell monolayer intestinal transport assays. To achieve this for iPSC-derived cells, intestinal organogenesis was adapted to transwell differentiation. Intestinal cells were assessed by marker expression through immunocytochemical and mRNA expression analyses, monolayer integrity through Transepithelial Electrical Resistance (TEER) measurements and molecule permeability, and functionality by taking advantage the well-characterized intestinal transport mechanisms. In most cases, marker expression for primary hInEpCs and iPSC-derived cells appeared to be as good as or better than Caco-2. Furthermore, transwell monolayers exhibited high TEER with low permeability. Primary hInEpCs showed molecule efflux indicative of P-glycoprotein (Pgp) transport. Primary hInEpCs and iPSC-derived cells also showed neonatal Fc receptor-dependent binding of immunoglobulin G variants. Primary hInEpCs and iPSC-derived intestinal cells exhibit expected marker expression and demonstrate basic functional monolayer formation, similar to or better than Caco-2. These cells could offer an alternative source of human intestinal cells for understanding normal intestinal epithelial physiology and drug transport.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda