Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Mol Microbiol ; 111(6): 1592-1603, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30875449

RESUMEN

Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Paracoccus denitrificans/enzimología , Aerobiosis , Anaerobiosis , Proteínas Bacterianas/genética , Chaperonas Moleculares/metabolismo , Molibdeno/metabolismo , Nitrato-Reductasa/genética , Oxidación-Reducción , Paracoccus denitrificans/genética
2.
J Biol Chem ; 293(43): 16778-16790, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30206118

RESUMEN

Cytochromes c are ubiquitous proteins, essential for life in most organisms. Their distinctive characteristic is the covalent attachment of heme to their polypeptide chain. This post-translational modification is performed by a dedicated protein system, which in many Gram-negative bacteria and plant mitochondria is a nine-protein apparatus (CcmA-I) called System I. Despite decades of study, mechanistic understanding of the protein-protein interactions in this highly complex maturation machinery is still lacking. Here, we focused on the interaction of CcmC, the protein that sources the heme cofactor, with CcmE, the pivotal component of System I responsible for the transfer of the heme to the apocytochrome. Using in silico analyses, we identified a putative interaction site between these two proteins (residues Asp47, Gln50, and Arg55 on CcmC; Arg73, Asp101, and Glu105 on CcmE), and we validated our findings by in vivo experiments in Escherichia coli Moreover, employing NMR spectroscopy, we examined whether a heme-binding site on CcmE contributes to this interaction and found that CcmC and CcmE associate via protein-protein rather than protein-heme contacts. The combination of in vivo site-directed mutagenesis studies and high-resolution structural techniques enabled us to determine at the residue level the mechanism for the formation of one of the key protein complexes for cytochrome c maturation by System I.


Asunto(s)
Apoproteínas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Citocromos c/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hemo/metabolismo , Hemoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Sustitución de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Sitios de Unión , Cristalografía por Rayos X , Citocromos c/química , Citocromos c/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hemo/química , Hemo/genética , Hemoproteínas/química , Hemoproteínas/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
3.
Mol Microbiol ; 103(1): 117-133, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27696579

RESUMEN

Nitrate and nitrite transport across biological membranes is often facilitated by protein transporters that are members of the major facilitator superfamily. Paracoccus denitrificans contains an unusual arrangement whereby two of these transporters, NarK1 and NarK2, are fused into a single protein, NarK, which delivers nitrate to the respiratory nitrate reductase and transfers the product, nitrite, to the periplasm. Our complementation studies, using a mutant lacking the nitrate/proton symporter NasA from the assimilatory nitrate reductase pathway, support that NarK1 functions as a nitrate/proton symporter while NarK2 is a nitrate/nitrite antiporter. Through the same experimental system, we find that Escherichia coli NarK and NarU can complement deletions in both narK and nasA in P. denitrificans, suggesting that, while these proteins are most likely nitrate/nitrite antiporters, they can also act in the net uptake of nitrate. Finally, we argue that primary sequence analysis and structural modelling do not readily explain why NasA, NarK1 and NarK2, as well as other transporters from this protein family, have such different functions, ranging from net nitrate uptake to nitrate/nitrite exchange.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Prueba de Complementación Genética , Transporte Iónico , Nitrato-Reductasa/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Nitrito Reductasas/metabolismo , Nitritos/metabolismo
4.
IUBMB Life ; 70(12): 1214-1221, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30428155

RESUMEN

There are many similarities between the oxidative phosphorylation apparatus of mitochondria and those found in the cytoplasmic membranes of alpha-proteobacteria, exemplified by Paracocus denitrificans. These similarities are reviewed here alongside consideration of the differences between mitochondrial and bacterial counterparts, as well as the loss from the modern mitochondria of many of the bacterial respiratory proteins. The assembly of c-type cytochromes is of particular evolutionary interest as the post-translational apparatus used in the alpha-proteobacteria is found in plants, and for example in eukyarotic species including algae of various kinds together with jakobids, but has been superseded by different systems in mitochondria of metazoans and trypanosomatids. All mitochondrial cytochromes c have the N-terminal sequence feature that is recognised by the metazoan system whereas the bacterial counterparts do not, suggesting that the loss of the bacterial system from eukaryotes occurred in the context of an already present recognition sequence in the eukaryotic cytochromes. Interestingly, in the case of cytochromes c1 the putative recognition features for the metazoans appear to be substantially present in the bacterial proteins. The ability to prepare from P. denitrificans inverted membrane vesicles with classic respiratory control presents a valuable system from which to draw lessons concerning the long debated topic of what controls the rates of respiration and ATP synthesis in mitochondria. © 2018 IUBMB Life, 70(12):1214-1221, 2018.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Paracoccus denitrificans/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Transporte de Electrón/genética , Mitocondrias/genética , Paracoccus denitrificans/metabolismo
5.
Biochem J ; 474(11): 1769-1787, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28385879

RESUMEN

Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH-nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans, by which nitrate induction operates at both transcriptional and translational levels, is proposed.


Asunto(s)
Adaptación Fisiológica , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Nitratos/metabolismo , Ciclo del Nitrógeno , Paracoccus denitrificans/fisiología , Compuestos de Amonio/metabolismo , Proteínas Bacterianas/agonistas , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo Energético , Perfilación de la Expresión Génica , Ácido Glutámico/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Nitrato-Reductasa (NADH)/antagonistas & inhibidores , Nitrato-Reductasa (NADH)/química , Nitrato-Reductasa (NADH)/genética , Nitrato-Reductasa (NADH)/metabolismo , Paracoccus denitrificans/enzimología , Paracoccus denitrificans/crecimiento & desarrollo , Proteómica/métodos , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Elementos Reguladores de la Transcripción , Proteínas Represoras/agonistas , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/agonistas , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Transactivadores/metabolismo
6.
J Biol Chem ; 289(12): 8681-96, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24469455

RESUMEN

Proteins belonging to the thioredoxin (Trx) superfamily are abundant in all organisms. They share the same structural features, arranged in a seemingly simple fold, but they perform a multitude of functions in oxidative protein folding and electron transfer pathways. We use the C-terminal domain of the unique transmembrane reductant conductor DsbD as a model for an in-depth analysis of the factors controlling the reactivity of the Trx fold. We employ NMR spectroscopy, x-ray crystallography, mutagenesis, in vivo functional experiments applied to DsbD, and a comparative sequence analysis of Trx-fold proteins to determine the effect of residues in the vicinity of the active site on the ionization of the key nucleophilic cysteine of the -CXXC- motif. We show that the function and reactivity of Trx-fold proteins depend critically on the electrostatic features imposed by an extended active-site motif.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Tiorredoxinas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas/genética , Mutación Puntual , Estructura Terciaria de Proteína , Alineación de Secuencia
7.
Mol Microbiol ; 92(1): 153-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24673795

RESUMEN

It has recently been shown that the biosynthetic route for both the d1 -haem cofactor of dissimilatory cd1 nitrite reductases and haem, via the novel alternative-haem-synthesis pathway, involves siroheme as an intermediate, which was previously thought to occur only as a cofactor in assimilatory sulphite/nitrite reductases. In many denitrifiers (which require d1 -haem), the pathway to make siroheme remained to be identified. Here we identify and characterize a sirohydrochlorin-ferrochelatase from Paracoccus pantotrophus that catalyses the last step of siroheme synthesis. It is encoded by a gene annotated as cbiX that was previously assumed to be encoding a cobaltochelatase, acting on sirohydrochlorin. Expressing this chelatase from a plasmid restored the wild-type phenotype of an Escherichia coli mutant-strain lacking sirohydrochlorin-ferrochelatase activity, showing that this chelatase can act in the in vivo siroheme synthesis. A ΔcbiX mutant in P. denitrificans was unable to respire anaerobically on nitrate, proving the role of siroheme as a precursor to another cofactor. We report the 1.9 Å crystal structure of this ferrochelatase. In vivo analysis of single amino acid variants of this chelatase suggests that two histidines, His127 and His187, are essential for siroheme synthesis. This CbiX can generally be identified in α-proteobacteria as the terminal enzyme of siroheme biosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Ferroquelatasa/química , Hemo/análogos & derivados , Paracoccus pantotrophus/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Ferroquelatasa/genética , Ferroquelatasa/metabolismo , Hemo/biosíntesis , Histidina/genética , Modelos Moleculares , Mutación , Paracoccus pantotrophus/genética , Estructura Terciaria de Proteína
8.
Mol Microbiol ; 93(2): 247-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24865947

RESUMEN

Some bacteria and archaea synthesize haem by an alternative pathway, which involves the sequestration of sirohaem as a metabolic intermediate rather than as a prosthetic group. Along this pathway the two acetic acid side-chains attached to C12 and C18 are decarboxylated by sirohaem decarboxylase, a heterodimeric enzyme composed of AhbA and AhbB, to give didecarboxysirohaem. Further modifications catalysed by two related radical SAM enzymes, AhbC and AhbD, transform didecarboxysirohaem into Fe-coproporphyrin III and haem respectively. The characterization of sirohaem decarboxylase is reported in molecular detail. Recombinant versions of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Methanosarcina barkeri AhbA/B have been produced and their physical properties compared. The D. vulgaris and M. barkeri enzyme complexes both copurify with haem, whose redox state influences the activity of the latter. The kinetic parameters of the D. desulfuricans enzyme have been determined, the enzyme crystallized and its structure has been elucidated. The topology of the enzyme reveals that it shares a structural similarity to the AsnC/Lrp family of transcription factors. The active site is formed in the cavity between the two subunits and a AhbA/B-product complex with didecarboxysirohaem has been obtained. A mechanism for the decarboxylation of the kinetically stable carboxyl groups is proposed.


Asunto(s)
Carboxiliasas/química , Carboxiliasas/metabolismo , Desulfovibrio desulfuricans/enzimología , Desulfovibrio vulgaris/enzimología , Hemo/análogos & derivados , Hemo/biosíntesis , Methanosarcina barkeri/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biocatálisis , Carboxiliasas/genética , Carboxiliasas/aislamiento & purificación , Dominio Catalítico , Desulfovibrio desulfuricans/genética , Desulfovibrio vulgaris/genética , Hemo/aislamiento & purificación , Hemo/metabolismo , Cinética , Methanosarcina barkeri/genética , Oxidación-Reducción , Multimerización de Proteína , Estructura Terciaria de Proteína , Factores de Transcripción/química
9.
J Biomol NMR ; 62(2): 221-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25953310

RESUMEN

Cytochrome c552 from the thermophilic bacterium Hydrogenobacter thermophilus is a typical c-type cytochrome which binds heme covalently via two thioether bonds between the two heme vinyl groups and two cysteine thiol groups in a CXXCH sequence motif. This protein was converted to a b-type cytochrome by substitution of the two cysteine residues by alanines (Tomlinson and Ferguson in Proc Natl Acad Sci USA 97:5156-5160, 2000a). To probe the significance of the covalent attachment of the heme in the c-type protein, (15)N relaxation and hydrogen exchange studies have been performed for the wild-type and b-type proteins. The two variants share very similar backbone dynamic properties, both proteins showing high (15)N order parameters in the four main helices, with reduced values in an exposed loop region (residues 18-21), and at the C-terminal residue Lys80. Some subtle changes in chemical shift and hydrogen exchange protection are seen between the wild-type and b-type variant proteins, not only for residues at and neighbouring the mutation sites, but also for some residues in the heme binding pocket. Overall, the results suggest that the main role of the covalent linkages between the heme group and the protein chain must be to increase the stability of the protein.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Grupo Citocromo c/química , Alanina/química , Cisteína/química , Hemo/química , Hidrógeno/metabolismo , Modelos Moleculares , Isótopos de Nitrógeno/análisis , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica
10.
Cell Mol Life Sci ; 71(15): 2837-63, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24515122

RESUMEN

Hemes (a, b, c, and o) and heme d 1 belong to the group of modified tetrapyrroles, which also includes chlorophylls, cobalamins, coenzyme F430, and siroheme. These compounds are found throughout all domains of life and are involved in a variety of essential biological processes ranging from photosynthesis to methanogenesis. The biosynthesis of heme b has been well studied in many organisms, but in sulfate-reducing bacteria and archaea, the pathway has remained a mystery, as many of the enzymes involved in these characterized steps are absent. The heme pathway in most organisms proceeds from the cyclic precursor of all modified tetrapyrroles uroporphyrinogen III, to coproporphyrinogen III, which is followed by oxidation of the ring and finally iron insertion. Sulfate-reducing bacteria and some archaea lack the genetic information necessary to convert uroporphyrinogen III to heme along the "classical" route and instead use an "alternative" pathway. Biosynthesis of the isobacteriochlorin heme d 1, a cofactor of the dissimilatory nitrite reductase cytochrome cd 1, has also been a subject of much research, although the biosynthetic pathway and its intermediates have evaded discovery for quite some time. This review focuses on the recent advances in the understanding of these two pathways and their surprisingly close relationship via the unlikely intermediate siroheme, which is also a cofactor of sulfite and nitrite reductases in many organisms. The evolutionary questions raised by this discovery will also be discussed along with the potential regulation required by organisms with overlapping tetrapyrrole biosynthesis pathways.


Asunto(s)
Vías Biosintéticas , Hemo/análogos & derivados , Tetrapirroles/metabolismo , Animales , Hemo/química , Hemo/metabolismo , Humanos , Modelos Moleculares , Tetrapirroles/química , Uroporfirinógenos/química , Uroporfirinógenos/metabolismo
11.
J Biol Chem ; 288(41): 29692-702, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24005668

RESUMEN

Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Aniones/química , Bacterias/genética , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Electroforesis en Gel de Poliacrilamida , Regulación Bacteriana de la Expresión Génica , Cinética , Familia de Multigenes , Mutación , Nitrito-Reductasa (NAD(P)H)/química , Nitrito-Reductasa (NAD(P)H)/genética , Nitrito-Reductasa (NAD(P)H)/metabolismo , Nitritos/metabolismo , Nitrógeno/química , Oxígeno/química , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Unión Proteica , Multimerización de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transducción de Señal/genética , Espectrometría de Fluorescencia
12.
Proc Natl Acad Sci U S A ; 108(45): 18260-5, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21969545

RESUMEN

Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.


Asunto(s)
Hemo/análogos & derivados , Cromatografía Líquida de Alta Presión , Hemo/síntesis química , Hemo/química , Hemo/metabolismo , Oxígeno/metabolismo
13.
J Bacteriol ; 195(18): 4297-309, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23893106

RESUMEN

The alphaproteobacterium Magnetospirillum gryphiswaldense synthesizes magnetosomes, which are membrane-enveloped crystals of magnetite. Here we show that nitrite reduction is involved in redox control during anaerobic biomineralization of the mixed-valence iron oxide magnetite. The cytochrome cd1-type nitrite reductase NirS shares conspicuous sequence similarity with NirN, which is also encoded within a larger nir cluster. Deletion of any one of these two nir genes resulted in impaired growth and smaller, fewer, and aberrantly shaped magnetite crystals during nitrate reduction. However, whereas nitrite reduction was completely abolished in the ΔnirS mutant, attenuated but significant nitrite reduction occurred in the ΔnirN mutant, indicating that only NirS is a nitrite reductase in M. gryphiswaldense. However, the ΔnirN mutant produced a different form of periplasmic d(1) heme that was not noncovalently bound to NirS, indicating that NirN is required for full reductase activity by maintaining a proper form of d1 heme for holo-cytochrome cd(1) assembly. In conclusion, we assign for the first time a physiological function to NirN and demonstrate that effective nitrite reduction is required for biomineralization of wild-type crystals, probably by contributing to oxidation of ferrous iron under oxygen-limited conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocromos/metabolismo , Óxido Ferrosoférrico/metabolismo , Hemo/análogos & derivados , Magnetospirillum/enzimología , Nitrito Reductasas/metabolismo , Anaerobiosis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Citocromos/química , Citocromos/genética , Hemo/metabolismo , Hierro/metabolismo , Magnetosomas , Magnetospirillum/clasificación , Nitrito Reductasas/química , Nitrito Reductasas/genética , Nitritos/metabolismo , Oxidación-Reducción
14.
Biochemistry ; 52(41): 7262-70, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24044352

RESUMEN

Cytochromes c comprise a diverse and widespread family of proteins containing covalently bound heme that are central to the life of most organisms. In many bacteria and in certain mitochondria, the synthesis of cytochromes c is performed by a complex post-translational modification apparatus called System I (or cytochrome c maturation, Ccm, system). In Escherichia coli , there are eight maturation proteins, several of which are involved in heme handling, but the mechanism of heme transfer from one protein to the next is not known. Attachment of the heme to the apocytochrome occurs via a novel covalent bond to a histidine residue of the heme chaperone CcmE. The discovery of a variant maturation system (System I*) has provided a new tool for studying cytochrome c assembly because the variant CcmE functions via a cysteine residue in the place of the histidine of System I. In this work, we use site-directed mutagenesis on both maturation systems to probe the function of the individual component proteins as well as their concerted action in transferring heme to the cytochrome c substrate. The roles of CcmA, CcmC, CcmE, and CcmF in the heme delivery process are compared between Systems I and I*. We show that a previously proposed quinone-binding site on CcmF is not essential for either system. Significant differences in the heme chemistry involved in the formation of cytochromes c in the variant system add new pieces to the cytochrome c biogenesis puzzle.


Asunto(s)
Citocromos c/metabolismo , Escherichia coli/metabolismo , Hemo/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
15.
J Biol Chem ; 287(4): 2342-52, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22121193

RESUMEN

c-Type cytochromes are widespread proteins, fundamental for respiration or photosynthesis in most cells. They contain heme covalently bound to protein in a highly conserved, highly stereospecific post-translational modification. In many bacteria, mitochondria, and archaea this heme attachment is catalyzed by the cytochrome c maturation (Ccm) proteins. Here we identify and characterize a covalent, ternary complex between the heme chaperone CcmE, heme, and cytochrome c. Formation of the complex from holo-CcmE occurs in vivo and in vitro and involves the specific heme-binding residues of both CcmE and apocytochrome c. The enhancement and attenuation of the amounts of this complex correlates completely with known consequences of mutations in genes for other Ccm proteins. We propose the complex is a trapped catalytic intermediate in the cytochrome c biogenesis process, at the point of heme transfer from CcmE to the cytochrome, the key step in the maturation pathway.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Citocromos c/biosíntesis , Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Hemo/metabolismo , Hemoproteínas/biosíntesis , Biosíntesis de Proteínas/fisiología , Proteínas de la Membrana Bacteriana Externa/genética , Citocromos c/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hemo/genética , Hemoproteínas/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo
16.
Biochim Biophys Acta ; 1817(10): 1754-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22609324

RESUMEN

Some recent new developments emerging from studies of the Systems I and III for c-type cytochrome biogenesis are discussed, particularly in regard to developments in studying System I in sulphate reducing bacteria. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas , Citocromos c , Mitocondrias , Proteínas Mitocondriales , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo
17.
IUBMB Life ; 65(3): 209-16, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23341334

RESUMEN

Cytochromes c are central proteins in energy transduction processes by virtue of their functions in electron transfer in respiration and photosynthesis. They have heme covalently attached to a characteristic CXXCH motif via protein-catalyzed post-translational modification reactions. Several systems with diverse constituent proteins have been identified in different organisms and are required to perform the heme attachment and associated functions. The necessary steps are translocation of the apocytochrome polypeptide to the site of heme attachment, transport and provision of heme to the appropriate compartment, reduction and chaperoning of the apocytochrome, and finally, formation of the thioether bonds between heme and two cysteines in the cytochrome. Here we summarize the established classical models for these processes and present recent progress in our understanding of the individual steps within the different cytochrome c biogenesis systems.


Asunto(s)
Apoproteínas/metabolismo , Cisteína/metabolismo , Citocromos c/metabolismo , Hemo/metabolismo , Procesamiento Proteico-Postraduccional , Secuencias de Aminoácidos , Animales , Apoproteínas/química , Transporte Biológico , Cisteína/química , Citocromos c/química , Hemo/química , Humanos , Mitocondrias/metabolismo , Modelos Moleculares , Plantas , Biosíntesis de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
18.
J Biol Chem ; 286(28): 24943-56, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21543317

RESUMEN

Bacterial growth and pathogenicity depend on the correct formation of disulfide bonds, a process controlled by the Dsb system in the periplasm of Gram-negative bacteria. Proteins with a thioredoxin fold play a central role in this process. A general feature of thiol-disulfide exchange reactions is the need to avoid a long lived product complex between protein partners. We use a multidisciplinary approach, involving NMR, x-ray crystallography, surface plasmon resonance, mutagenesis, and in vivo experiments, to investigate the interaction between the two soluble domains of the transmembrane reductant conductor DsbD. Our results show oxidation state-dependent affinities between these two domains. These observations have implications for the interactions of the ubiquitous thioredoxin-like proteins with their substrates, provide insight into the key role played by a unique redox partner with an immunoglobulin fold, and are of general importance for oxidative protein-folding pathways in all organisms.


Asunto(s)
Disulfuros/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Oxidorreductasas/química , Pliegue de Proteína , Cristalografía por Rayos X , Disulfuros/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectroscopía de Resonancia Magnética , Mutagénesis , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
19.
Biochem J ; 435(1): 217-25, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21244362

RESUMEN

Cytochrome cd1 nitrite reductase is a haem-containing enzyme responsible for the reduction of nitrite into NO, a key step in the anaerobic respiratory process of denitrification. The active site of cytochrome cd1 contains the unique d1 haem cofactor, from which NO must be released. In general, reduced haems bind NO tightly relative to oxidized haems. In the present paper, we present experimental evidence that the reduced d1 haem of cytochrome cd1 from Paracoccus pantotrophus releases NO rapidly (k=65-200 s(-1)); this result suggests that NO release is the rate-limiting step of the catalytic cycle (turnover number=72 s(-1)). We also demonstrate, using a complex of the d1 haem and apomyoglobin, that the rapid dissociation of NO is largely controlled by the d1 haem cofactor itself. We present a reaction mechanism proposed to be applicable to all cytochromes cd1 and conclude that the d1 haem has evolved to have low affinity for NO, as compared with other ferrous haems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocromos/metabolismo , Hemo/análogos & derivados , Óxido Nítrico/metabolismo , Nitrito Reductasas/metabolismo , Paracoccus pantotrophus/enzimología , Apoproteínas/metabolismo , Biocatálisis , Desnitrificación , Hemo/metabolismo , Cinética , Modelos Moleculares , Mioglobina/metabolismo , Oxidación-Reducción , Fotólisis
20.
Biochem J ; 435(3): 743-53, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21348864

RESUMEN

The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system.


Asunto(s)
Nitratos/metabolismo , Nitritos/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citoplasma , Regulación Bacteriana de la Expresión Génica/fisiología , Familia de Multigenes , NAD/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Oxidación-Reducción , Paracoccus denitrificans/genética , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda