Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Cell ; 165(4): 867-81, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27133164

RESUMEN

Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes.


Asunto(s)
Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo , Animales , Autofagia , Embrión de Mamíferos/citología , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Fibroblastos/metabolismo , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Inflamasomas/metabolismo , Ratones , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Virus Sindbis/metabolismo
2.
EMBO J ; 42(18): e113987, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37577760

RESUMEN

Dysregulation of the PI3K/AKT pathway is a common occurrence in high-grade serous ovarian carcinoma (HGSOC), with the loss of the tumour suppressor PTEN in HGSOC being associated with poor prognosis. The cellular mechanisms of how PTEN loss contributes to HGSOC are largely unknown. We here utilise time-lapse imaging of HGSOC spheroids coupled to a machine learning approach to classify the phenotype of PTEN loss. PTEN deficiency induces PI(3,4,5)P3 -rich and -dependent membrane protrusions into the extracellular matrix (ECM), resulting in a collective invasion phenotype. We identify the small GTPase ARF6 as a crucial vulnerability of HGSOC cells upon PTEN loss. Through a functional proteomic CRISPR screen of ARF6 interactors, we identify the ARF GTPase-activating protein (GAP) AGAP1 and the ECM receptor ß1-integrin (ITGB1) as key ARF6 interactors in HGSOC regulating PTEN loss-associated invasion. ARF6 functions to promote invasion by controlling the recycling of internalised, active ß1-integrin to maintain invasive activity into the ECM. The expression of the CYTH2-ARF6-AGAP1 complex in HGSOC patients is inversely associated with outcome, allowing the identification of patient groups with improved versus poor outcome. ARF6 may represent a therapeutic vulnerability in PTEN-depleted HGSOC.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias Ováricas , Humanos , Femenino , Integrinas/metabolismo , Proteómica , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(33): e2400862121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106311

RESUMEN

Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the "SxS" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ligandos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Péptidos/metabolismo , Péptidos/química , Evolución Molecular , Modelos Moleculares , Transducción de Señal , Fosfotransferasas
4.
Proc Natl Acad Sci U S A ; 120(22): e2303480120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216519

RESUMEN

Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.


Asunto(s)
Arabidopsis , Caspasas , Humanos , Caspasas/química , Simulación del Acoplamiento Molecular , Apoptosis , Proteínas de Unión al ADN
5.
Nano Lett ; 24(3): 790-796, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189790

RESUMEN

We experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core-shell nanowires under a magnetic field, B, up to 30 T and at temperatures in the range 4.2-200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing B. The doublet accounts for spin-polarized currents through the Zeeman split channels of the InAs (GaSb) conduction (valence) band and exhibits strong anisotropy with respect to B orientation and marked temperature dependence. Envelope function approximation and a semiclassical (WKB) approach allow to compute the magnetic quantum states of InAs and GaSb sections of the nanowire and to estimate the B-dependent tunneling current across the broken-gap interface. Disentangling different magneto-transport channels and a thermally activated valence-to-valence band transport current, we extract the g-factor from the spin-up and spin-down dI/dV branch dispersion, revealing a giant, strongly anisotropic g-factor in excess of 60 (100) for the radial (tilted) field configurations.

6.
Nature ; 558(7708): 136-140, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29849149

RESUMEN

Autophagy increases the lifespan of model organisms; however, its role in promoting mammalian longevity is less well-established1,2. Here we report lifespan and healthspan extension in a mouse model with increased basal autophagy. To determine the effects of constitutively increased autophagy on mammalian health, we generated targeted mutant mice with a Phe121Ala mutation in beclin 1 (Becn1F121A/F121A) that decreases its interaction with the negative regulator BCL2. We demonstrate that the interaction between beclin 1 and BCL2 is disrupted in several tissues in Becn1 F121A/F121A knock-in mice in association with higher levels of basal autophagic flux. Compared to wild-type littermates, the lifespan of both male and female knock-in mice is significantly increased. The healthspan of the knock-in mice also improves, as phenotypes such as age-related renal and cardiac pathological changes and spontaneous tumorigenesis are diminished. Moreover, mice deficient in the anti-ageing protein klotho 3 have increased beclin 1 and BCL2 interaction and decreased autophagy. These phenotypes, along with premature lethality and infertility, are rescued by the beclin 1(F121A) mutation. Together, our data demonstrate that disruption of the beclin 1-BCL2 complex is an effective mechanism to increase autophagy, prevent premature ageing, improve healthspan and promote longevity in mammals.


Asunto(s)
Envejecimiento/fisiología , Autofagia/fisiología , Beclina-1/metabolismo , Longevidad/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Envejecimiento/genética , Animales , Autofagosomas/metabolismo , Beclina-1/genética , Células Cultivadas , Femenino , Fibroblastos/citología , Técnicas de Sustitución del Gen , Glucuronidasa/deficiencia , Glucuronidasa/genética , Células HeLa , Salud , Humanos , Proteínas Klotho , Longevidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación
7.
Nature ; 561(7723): E30, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29921925

RESUMEN

In this Letter, the graphs in Fig. 2a and c were inadvertently the same owing to a copy and paste error from the original graphs in Prism. The Source Data files containing the raw data were correct. Fig. 2c has been corrected online.

8.
Opt Express ; 31(20): 31734-31748, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37858991

RESUMEN

A new procedure to measure the extinction coefficient k of film materials that are relatively transparent is presented. This procedure does not require the use of an optical-constant model or the knowledge of extra physical properties of the material, such as the specific heat capacity. It involves preparing a sample with two areas, at least one of them coated with the film, whereas the other may remain uncoated or may be coated with a different thickness of the same material. The differential transmittance between the two sample areas is shown to be proportional to k of the film material in the following measurement conditions: the incident light is p polarized and it impinges at the film material Brewster angle. The differential transmittance is obtained with a single measurement by making the light beam or the sample to oscillate with respect to one another and by using a lock-in amplifier; for normalization purposes, the transmittance in one of the sample areas is also measured. The proportionality factor between the normalized differential transmittance and k only involves the wavelength, the film thickness, and the Brewster angle. The knowledge of the film Brewster angle requires that the film refractive index (n) is measured beforehand; this can be performed with standard procedures, such as ellipsometry, since such techniques are efficient at measuring n of a transparent material, but are inefficient at measuring a small k. The procedure is exemplified with the calculation of k in the far ultraviolet of AlF3 films deposited by evaporation. The dependence of the uncertainty of k obtained with this procedure is analyzed in terms of the uncertainty of the film n, of wavelength, and of the degree of polarization of the incident beam. The selection of a substrate with similar n to the film material is also discussed. The uncertainties involved with the present procedure were analyzed for a specific example and an uncertainty of 2 × 10-5 in k calculation is considered feasible.

9.
Opt Express ; 31(10): 15392-15408, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157642

RESUMEN

Imaging at H Ly-α (121.6 nm), among other spectral lines in the short far UV (FUV), is of high interest for astrophysics, solar, and atmosphere physics, since this spectral line is ubiquitously present in space observations. However, the lack of efficient narrowband coatings has mostly prevented such observations. Present and future space observatories like GLIDE and the IR/O/UV NASA concept, among other applications, can benefit from the development of efficient narrowband coatings at Ly-α. The current state of the art of narrowband FUV coatings lacks performance and stability for coatings that peak at wavelengths shorter than ∼135 nm. We report highly reflective AlF3/LaF3 narrowband mirrors at Ly-α prepared by thermal evaporation, with, to our knowledge, the highest reflectance (over 80%) of a narrowband multilayer at such a short wavelength obtained so far. We also report a remarkable reflectance after several months of storage in different environments, including relative humidity levels above 50%. For astrophysics targets in which Ly-α may mask a close spectral line, such as in the search for biomarkers, we present the first coating in the short FUV for imaging at the OI doublet (130.4 and 135.6 nm), with the additional requirement of rejecting the intense Ly-α, which might mask the OI observations. Additionally, we present coatings with the symmetric design, aimed to observe at Ly-α, and reject the strong OI geocoronal emission, that could be of interest for atmosphere observations.

10.
J Chem Inf Model ; 63(21): 6642-6654, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37909535

RESUMEN

There is still growing interest in graphene interactions with proteins, both for its possible biological applications and due to concerns over detrimental effects at the cellular level. As with any process involving proteins, an understanding of amino acid composition is desirable. In this work, we systematically studied the adsorption process of amino acids onto pristine graphene via rigorous free-energy calculations. We characterized the free energy, potential energy, and entropy of the adsorption of all proteinogenic amino acids. The energetic components were further separated into pair interaction contributions. A linear correlation was found between the free energy and the solvent accessible surface area change during adsorption (ΔSASAads) over pristine graphene and uncharged amino acids. Free energies over pristine graphene were compared with adsorption onto graphene oxide, finding an almost complete loss of the favorability of amino acid adsorption onto graphene. Finally, the correlation with ΔSASAads was used to successfully predict the free energy of adsorption of several penta-l-peptides in different structural states and sequences. Due to the relative ease of calculating the ΔSASAads compared to free-energy calculations, it could prove to be a cost-effective predictor of the free energy of adsorption for proteins onto nonpolar surfaces.


Asunto(s)
Aminoácidos , Grafito , Aminoácidos/química , Entropía , Grafito/química , Adsorción , Solventes
11.
Epilepsy Behav ; 147: 109384, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634373

RESUMEN

PURPOSE: Urgent seizures are a medical emergency for which new therapies are still needed. This study evaluated the use of intravenous brivaracetam (IV-BRV) in an emergency setting in clinical practice. METHODS: BRIV-IV was a retrospective, multicenter, observational study. It included patients ≥18 years old who were diagnosed with urgent seizures (including status epilepticus (SE), acute repetitive seizures, and high-risk seizures) and who were treated with IV-BRV according to clinical practice in 14 hospital centers. Information was extracted from clinical charts and included in an electronic database. Primary effectiveness endpoints included the rate of IV-BRV responder patients, the rate of patients with a sustained response without seizure relapse in 12 h, and the time between IV-BRV administration and clinical response. Primary safety endpoints were comprised the percentage of patients with adverse events and those with adverse events leading to discontinuation. RESULTS: A total of 156 patients were included in this study. The mean age was 57.7 ± 21.5 years old with a prior diagnosis of epilepsy for 57.1% of patients. The most frequent etiologies were brain tumor-related (18.1%) and vascular (11.2%) epilepsy. SE was diagnosed in 55.3% of patients. The median time from urgent seizure onset to IV treatment administration was 60.0 min (range: 15.0-360.0), and the median time from IV treatment to IV-BRV was 90.0 min (range: 30.0-2400.0). Regarding dosage, the mean bolus infusion was 163.0 ± 73.0 mg and the mean daily dosage was 195.0 ± 87.0 mg. A total of 77.6% of patients responded to IV-BRV (66.3% with SE vs. 91% other urgent seizures) with a median response time of 30.0 min (range: 10.0-60.0). A sustained response was achieved in 62.8% of patients. However, adverse events were reported in 14.7%, which were predominantly somnolence and fatigue, with 4.5% leading to discontinuation. Eighty-six percent of patients were discharged with oral brivaracetam. CONCLUSION: IV-BRV in emergency settings was effective, and tolerability was good for most patients. However, a larger series is needed to confirm the outcomes.


Asunto(s)
Epilepsia , Estado Epiléptico , Adolescente , Adulto , Anciano , Humanos , Persona de Mediana Edad , Anticonvulsivantes/efectos adversos , Quimioterapia Combinada , Epilepsia/tratamiento farmacológico , Recurrencia Local de Neoplasia , Pirrolidinonas/efectos adversos , Estudios Retrospectivos , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Resultado del Tratamiento
12.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511161

RESUMEN

This study takes a step in understanding the physiological implications of the nanosecond pulsed electric field (nsPEF) by integrating molecular dynamics simulations and machine learning techniques. nsPEF, a state-of-the-art technology, uses high-voltage electric field pulses with a nanosecond duration to modulate cellular activity. This investigation reveals a relatively new and underexplored phenomenon: protein-mediated electroporation. Our research focused on the voltage-sensing domain (VSD) of the NaV1.5 sodium cardiac channel in response to nsPEF stimulation. We scrutinized the VSD structures that form pores and thereby contribute to the physical chemistry that governs the defibrillation effect of nsPEF. To do so, we conducted a comprehensive analysis involving the clustering of 142 replicas simulated for 50 ns under nsPEF stimuli. We subsequently pinpointed the representative structures of each cluster and computed the free energy between them. We find that the selected VSD of NaV1.5 forms pores under nsPEF stimulation, but in a way that significant differs from the traditional VSD opening. This study not only extends our understanding of nsPEF and its interaction with protein channels but also adds a new effect to further study.


Asunto(s)
Electricidad , Electroporación , Electroporación/métodos , Terapia de Electroporación , Corazón
13.
BMC Plant Biol ; 22(1): 142, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331142

RESUMEN

BACKGROUND: Precision genome mutagenesis using CRISPR/Cas has become the standard method to generate mutant plant lines. Several improvements have been made to increase mutagenesis efficiency, either through vector optimisation or the application of heat stress. RESULTS: Here, we present a simplified heat stress assay that can be completed in six days using commonly-available laboratory equipment. We show that three heat shocks (3xHS) efficiently increases indel efficiency of LbCas12a and Cas9, irrespective of the target sequence or the promoter used to express the nuclease. The generated indels are primarily somatic, but for three out of five targets we demonstrate that up to 25% more biallelic mutations are transmitted to the progeny when heat is applied compared to non-heat controls. We also applied our heat treatment to lines containing CRISPR base editors and observed a 22-27% increase in the percentage of C-to-T base editing. Furthermore, we test the effect of 3xHS on generating large deletions and a homologous recombination reporter. Interestingly, we observed no positive effect of 3xHS treatment on either approach using our conditions. CONCLUSIONS: Together, our experiments show that heat treatment is consistently effective at increasing the number of somatic mutations using many CRISPR approaches in plants and in some cases can increase the recovery of mutant progeny.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Genoma de Planta/genética , Mutagénesis , Plantas Modificadas Genéticamente/genética
14.
Mol Cell ; 53(5): 710-25, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560926

RESUMEN

Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.


Asunto(s)
Acetilcoenzima A/química , Autofagia , Citosol/enzimología , Regulación Enzimológica de la Expresión Génica , Adenosina Trifosfato/química , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Proteína p300 Asociada a E1A/química , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HeLa , Humanos , Ácidos Cetoglutáricos/química , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo
15.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682837

RESUMEN

Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels, leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype manipulation, modulation of gene expression, and as a novel cancer treatment. This review thoroughly explores both nsPEF's history and applications, with emphasis on the cellular effects from a biophysics perspective, highlighting the role of ionic channels as a mechanistic driver of the increase in cytoplasmic Ca2+ concentration.


Asunto(s)
Calcio , Electricidad , Apoptosis , Calcio/metabolismo , Proliferación Celular , Canales Iónicos
16.
EMBO J ; 36(16): 2373-2389, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28694244

RESUMEN

Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates ß-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.


Asunto(s)
Comunicación Celular , Células Endoteliales/fisiología , Melanocitos/fisiología , Cadherinas/análisis , Línea Celular , Proteína 61 Rica en Cisteína/análisis , Regulación de la Expresión Génica , Humanos , Espectrometría de Masas , beta Catenina/análisis
17.
J Antimicrob Chemother ; 76(12): 3197-3200, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34534310

RESUMEN

BACKGROUND: Antimicrobial therapy is essential for the treatment of enteric fever, the infection caused by Salmonella serovars Typhi and Paratyphi A. However, an increase in resistance to key antimicrobials and the emergence of MDR and XDR in Salmonella Typhi poses a major threat for efficacious outpatient treatments. OBJECTIVES: We recently identified tebipenem, an oral carbapenem licensed for use for respiratory tract infections in Japan, as a potential alternative treatment for MDR/XDR Shigella spp. Here, we aimed to test the in vitro antibacterial efficacy of this drug against MDR and XDR typhoidal Salmonella. METHODS: We determined the in vitro activity of tebipenem in time-kill assays against a collection of non-XDR and XDR Salmonella Typhi and Salmonella Paratyphi A (non-XDR) isolated in Nepal and Bangladesh. We also tested the efficacy of tebipenem in combination with other antimicrobials. RESULTS: We found that both XDR and non-XDR Salmonella Typhi and Salmonella Paratyphi A are susceptible to tebipenem, exhibiting low MICs, and were killed within 8-24 h at 2-4×MIC. Additionally, tebipenem demonstrated synergy with two other antimicrobials and could efficiently induce bacterial killing. CONCLUSIONS: Salmonella Paratyphi A and XDR Salmonella Typhi display in vitro susceptibility to the oral carbapenem tebipenem, while synergistic activity with other antimicrobials may limit the emergence of resistance. The broad-spectrum activity of this drug against MDR/XDR organisms renders tebipenem a good candidate for clinical trials.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Humanos , Salmonella , Fiebre Tifoidea/tratamiento farmacológico
18.
Opt Express ; 29(5): 7706-7712, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726266

RESUMEN

A Ti seed film is investigated towards improving the far UV reflectance of Al/MgF2 mirrors. Samples were initially coated with a Ti film in half of the area and they were later coated in the full area with an Al film and protected with MgF2. All materials were deposited by evaporation. Samples were prepared with the MgF2 layer deposited either at room temperature (RT) or at 225°C. A 3-nm thick Ti seed film was seen to significantly increase the reflectance of Al/MgF2 mirrors at the well-known reflectance dip centered at ∼160 nm; this was attributed to a reduction of short-range surface roughness at the Al/MgF2 interface, which is responsible for radiation absorption through surface-plasmon (SP) coupling. SP absorption was more efficiently reduced with a Ti seed film on samples fully deposited at RT. A Ti seed film as thin as 1 nm provided the largest SP absorption reduction, and the SP dip was almost completely removed.

19.
FASEB J ; 34(2): 3129-3150, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908069

RESUMEN

Aging-related organ degeneration is driven by multiple factors including the cell maintenance mechanisms of autophagy, the cytoprotective protein αKlotho, and the lesser known effects of excess phosphate (Pi), or phosphotoxicity. To examine the interplay between Pi, autophagy, and αKlotho, we used the BK/BK mouse (homozygous for mutant Becn1F121A ) with increased autophagic flux, and αKlotho-hypomorphic mouse (kl/kl) with impaired urinary Pi excretion, low autophagy, and premature organ dysfunction. BK/BK mice live longer than WT littermates, and have heightened phosphaturia from downregulation of two key NaPi cotransporters in the kidney. The multi-organ failure in kl/kl mice was rescued in the double-mutant BK/BK;kl/kl mice exhibiting lower plasma Pi, improved weight gain, restored plasma and renal αKlotho levels, decreased pathology of multiple organs, and improved fertility compared to kl/kl mice. The beneficial effects of heightened autophagy from Becn1F121A was abolished by chronic high-Pi diet which also shortened life span in the BK/BK;kl/kl mice. Pi promoted beclin 1 binding to its negative regulator BCL2, which impairs autophagy flux. Pi downregulated αKlotho, which also independently impaired autophagy. In conclusion, Pi, αKlotho, and autophagy interact intricately to affect each other. Both autophagy and αKlotho antagonizes phosphotoxicity. In concert, this tripartite system jointly determines longevity and life span.


Asunto(s)
Envejecimiento/metabolismo , Autofagia , Glucuronidasa/metabolismo , Fosfatos/metabolismo , Animales , Beclina-1/deficiencia , Beclina-1/genética , Femenino , Glucuronidasa/genética , Células HEK293 , Humanos , Riñón/metabolismo , Proteínas Klotho , Masculino , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
20.
Proc Natl Acad Sci U S A ; 115(16): 4176-4181, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610308

RESUMEN

Allelic loss of the autophagy gene, beclin 1/BECN1, increases the risk of patients developing aggressive, including human epidermal growth factor receptor 2 (HER2)-positive, breast cancers; however, it is not known whether autophagy induction may be beneficial in preventing HER2-positive breast tumor growth. We explored the regulation of autophagy in breast cancer cells by HER2 in vitro and the effects of genetic and pharmacological strategies to increase autophagy on HER2-driven breast cancer growth in vivo. Our findings demonstrate that HER2 interacts with Beclin 1 in breast cancer cells and inhibits autophagy. Mice with increased basal autophagy due to a genetically engineered mutation in Becn1 are protected from HER2-driven mammary tumorigenesis, and HER2 fails to inhibit autophagy in primary cells derived from these mice. Moreover, treatment of mice with HER2-positive human breast cancer xenografts with the Tat-Beclin 1 autophagy-inducing peptide inhibits tumor growth as effectively as a clinically used HER2 tyrosine kinase inhibitor (TKI). This inhibition of tumor growth is associated with a robust induction of autophagy, a disruption of HER2/Beclin 1 binding, and a transcriptional signature in the tumors distinct from that observed with HER2 TKI treatment. Taken together, these findings indicate that the HER2-mediated inhibition of Beclin 1 and autophagy likely contributes to HER2-mediated tumorigenesis and that strategies to block HER2/Beclin 1 binding and/or increase autophagy may represent a new therapeutic approach for HER2-positive breast cancers.


Asunto(s)
Autofagia , Beclina-1/fisiología , Proteínas de Neoplasias/fisiología , Receptor ErbB-2/fisiología , Sustitución de Aminoácidos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Beclina-1/deficiencia , Beclina-1/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Técnicas de Sustitución del Gen , Humanos , Lapatinib , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Terapia Molecular Dirigida , Mutación , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Fragmentos de Péptidos/uso terapéutico , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinas/farmacología , Distribución Aleatoria , Receptor ErbB-2/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda