Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Clin Immunol ; 41(5): 1048-1063, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660144

RESUMEN

Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-γ and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy. METHODS: We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY. RESULTS: We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related - most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-γ on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (ΔψM), indicating mitochondrial dysfunction. CONCLUSION: Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-γ-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.


Asunto(s)
Cardiomiopatía Chagásica/genética , Inflamación/genética , Mitocondrias/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Secuenciación del Exoma
2.
Crit Rev Immunol ; 40(5): 379-403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33463950

RESUMEN

Operational tolerance (OT) is the phenomenon occurring in human renal and liver transplantation in which the body does not reject the organ after discontinuing immunosuppression for at least a year. We revisited the data generated by The Brazilian Multicenter Study on Operational Tolerance involving different conceptual fields - antigen-specific cytokine response, immune cell numbers and repertoire, signaling pathways, and epigenetics. We integrated our data to pave the way to systems biology thinking and harness debate on potential mechanisms in OT. We present original data on systems biology in OT, connecting potential mechanistic players. Using bioinformatics, we identified three dominant features that discriminate OT from its opposing clinical outcome, chronic rejection (CR). The OT-CR discriminative molecules were FOXP3, GATA3 and STAT6, each corresponding to a differential profile: (1) In FOXP3, OT presents preserved regulatory T cell (Treg) numbers but decreased numbers in CR; (2) in GATA3, increased expression is seen in OT; and (3) in STAT6, decreased monocyte activation is seen in OT. With these variables, we built molecular networks to identify interactions related to OT versus CR. Our first systems biology endeavor gave rise to novel potentially relevant interconnected players in OT mechanisms: FOXP3 connecting to interleukin-9 (IL-9) and IL-35 signaling, suggesting their immunoregulatory involvement in OT. Likewise, GATA3/FOXP3 interactions incrementing/stabilizing FOXP3 transcription suggest participation in keeping healthy FOXP3+ Tregs in OT. We envision that systems biology thinking will greatly contribute to advancing knowledge in human transplantation tolerance in an interactive perspective.


Asunto(s)
Trasplante de Riñón , Factores de Transcripción Forkhead/genética , Humanos , Tolerancia Inmunológica , Biología de Sistemas , Linfocitos T Reguladores , Tolerancia al Trasplante
3.
Crit Care ; 22(1): 68, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29540208

RESUMEN

BACKGROUND: Exosomes isolated from plasma of patients with sepsis may induce vascular apoptosis and myocardial dysfunction by mechanisms related to inflammation and oxidative stress. Despite previous studies demonstrating that these vesicles contain genetic material related to cellular communication, their molecular cargo during sepsis is relatively unknown. In this study, we evaluated the presence of microRNAs (miRNAs) and messenger RNAs (mRNAs) related to inflammatory response and redox metabolism in exosomes of patients with septic shock. METHODS: Blood samples were collected from 24 patients with septic shock at ICU admission and after 7 days of treatment. Twelve healthy volunteers were used as control subjects. Exosomes were isolated by ultracentrifugation, and their miRNA and mRNA content was evaluated by qRT-PCR array. RESULTS: As compared with healthy volunteers, exosomes from patients with sepsis had significant changes in 65 exosomal miRNAs. Twenty-eight miRNAs were differentially expressed, both at enrollment and after 7 days, with similar kinetics (18 miRNAs upregulated and 10 downregulated). At enrollment, 35 differentially expressed miRNAs clustered patients with sepsis according to survival. The pathways enriched by the miRNAs of patients with sepsis compared with control subjects were related mostly to inflammatory response. The comparison of miRNAs from patients with sepsis according to hospital survival demonstrated pathways related mostly to cell cycle regulation. At enrollment, sepsis was associated with significant increases in the expression of mRNAs related to redox metabolism (myeloperoxidase, 64-fold; PRDX3, 2.6-fold; SOD2, 2.2-fold) and redox-responsive genes (FOXM1, 21-fold; SELS, 16-fold; GLRX2, 3.4-fold). The expression of myeloperoxidase mRNA remained elevated after 7 days (65-fold). CONCLUSIONS: Exosomes from patients with septic shock convey miRNAs and mRNAs related to pathogenic pathways, including inflammatory response, oxidative stress, and cell cycle regulation. Exosomes may represent a novel mechanism for intercellular communication during sepsis.


Asunto(s)
Exosomas/química , MicroARNs/análisis , Choque Séptico/fisiopatología , Adulto , Anciano , Brasil , Exosomas/metabolismo , Exosomas/patología , Femenino , Proteína Forkhead Box M1/análisis , Proteína Forkhead Box M1/sangre , Glutarredoxinas/análisis , Glutarredoxinas/sangre , Humanos , Inflamación/complicaciones , Inflamación/diagnóstico , Inflamación/metabolismo , Unidades de Cuidados Intensivos/organización & administración , Masculino , Proteínas de la Membrana/análisis , Proteínas de la Membrana/sangre , MicroARNs/sangre , MicroARNs/metabolismo , Persona de Mediana Edad , Estrés Oxidativo , Evaluación del Resultado de la Atención al Paciente , Peroxidasa/análisis , Peroxidasa/sangre , Peroxiredoxina III/análisis , Peroxiredoxina III/sangre , Estudios Prospectivos , ARN Mensajero/análisis , ARN Mensajero/sangre , ARN Mensajero/metabolismo , Selenoproteínas/análisis , Selenoproteínas/sangre , Choque Séptico/metabolismo , Superóxido Dismutasa/análisis , Superóxido Dismutasa/sangre
4.
J Infect Dis ; 215(3): 387-395, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003350

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 7 million people in Latin American areas of endemicity. About 30% of infected patients will develop chronic Chagas cardiomyopathy (CCC), an inflammatory cardiomyopathy characterized by hypertrophy, fibrosis, and myocarditis. Further studies are necessary to understand the molecular mechanisms of disease progression. Transcriptome analysis has been increasingly used to identify molecular changes associated with disease outcomes. We thus assessed the whole-blood transcriptome of patients with Chagas disease. Microarray analysis was performed on blood samples from 150 subjects, of whom 30 were uninfected control patients and 120 had Chagas disease (1 group had asymptomatic disease, and 2 groups had CCC with either a preserved or reduced left ventricular ejection fraction [LVEF]). Each Chagas disease group displayed distinct gene expression and functional pathway profiles. The most different expression patterns were between CCC groups with a preserved or reduced LVEF. A more stringent analysis indicated that 27 differentially expressed genes, particularly those related to natural killer (NK)/CD8+ T-cell cytotoxicity, separated the 2 groups. NK/CD8+ T-cell cytotoxicity could play a role in determining Chagas disease progression. Understanding genes associated with disease may lead to improved insight into CCC pathogenesis and the identification of prognostic factors for CCC progression.


Asunto(s)
Cardiomiopatía Chagásica/genética , Disfunción Ventricular/genética , Linfocitos T CD8-positivos/inmunología , Cardiomiopatía Chagásica/sangre , Cardiomiopatía Chagásica/fisiopatología , Citotoxicidad Inmunológica/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Células Asesinas Naturales/inmunología , Análisis por Micromatrices , Persona de Mediana Edad , Miocardio/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Disfunción Ventricular/sangre , Disfunción Ventricular/parasitología
5.
Clin Infect Dis ; 65(7): 1103-1111, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575239

RESUMEN

Background: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects 10 million people worldwide. Approximately 12000 deaths attributable to Chagas disease occur annually due to chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy presenting with heart failure and arrythmia; 30% of infected subjects develop CCC years after infection. Genetic mechanisms play a role in differential progression to CCC, but little is known about the role of epigenetic modifications in pathological gene expression patterns in CCC patients' myocardium. DNA methylation is the most common modification in the mammalian genome. Methods: We investigated the impact of genome-wide cardiac DNA methylation on global gene expression in myocardial samples from end-stage CCC patients, compared to control samples from organ donors. Results: In total, 4720 genes were differentially methylated between CCC patients and controls, of which 399 were also differentially expressed. Several of them were related to heart function or to the immune response and had methylation sites in their promoter region. Reporter gene and in silico transcription factor binding analyses indicated promoter methylation modified expression of key genes. Among those, we found potassium channel genes KCNA4 and KCNIP4, involved in electrical conduction and arrythmia, SMOC2, involved in matrix remodeling, as well as enkephalin and RUNX3, potentially involved in the increased T-helper 1 cytokine-mediated inflammatory damage in heart. Conclusions: Results support that DNA methylation plays a role in the regulation of expression of pathogenically relevant genes in CCC myocardium, and identify novel potential disease pathways and therapeutic targets in CCC.


Asunto(s)
Cardiomiopatía Chagásica/genética , Enfermedad de Chagas/genética , Metilación de ADN/genética , Adolescente , Adulto , Anciano , Cardiomiopatía Chagásica/parasitología , Enfermedad de Chagas/parasitología , Enfermedad Crónica , Dermatoglifia del ADN/métodos , Femenino , Expresión Génica/genética , Corazón/parasitología , Humanos , Inflamación/genética , Inflamación/parasitología , Masculino , Persona de Mediana Edad , Miocardio/metabolismo , Canales de Potasio/genética , Regiones Promotoras Genéticas/genética , Trypanosoma cruzi/patogenicidad , Adulto Joven
6.
J Infect Dis ; 214(1): 161-5, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26951817

RESUMEN

Long noncoding RNAs (lncRNAs) modulate gene expression at the epigenetic, transcriptional, and posttranscriptional levels. Dysregulation of the lncRNA known as myocardial infarction-associated transcript (MIAT) has been associated with myocardial infarction. Chagas disease causes a severe inflammatory dilated chronic cardiomyopathy (CCC). We investigated the role of MIAT in CCC. A whole-transcriptome analysis of heart biopsy specimens and formalin-fixed, paraffin-embedded samples revealed that MIAT was overexpressed in patients with CCC, compared with subjects with noninflammatory dilated cardiomyopathy and controls. These results were confirmed in a mouse model. Results suggest that MIAT is a specific biomarker of CCC.


Asunto(s)
Enfermedad de Chagas/complicaciones , Enfermedad de Chagas/genética , Perfilación de la Expresión Génica , Infarto del Miocardio/etiología , Infarto del Miocardio/genética , ARN Largo no Codificante , Animales , Enfermedad de Chagas/fisiopatología , Femenino , Humanos , Masculino , Ratones , Factores de Transcripción
8.
Mediators Inflamm ; 2014: 345659, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120285

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products-like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins)-are potent inducers of proinflammatory responses (i.e., cytokines and NO production) by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.


Asunto(s)
Antígenos CD40/metabolismo , Ligando de CD40/metabolismo , Glicoproteínas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Interleucina-12/metabolismo , Monocitos/metabolismo , Mucinas/química , Trypanosoma cruzi/inmunología , Células Cultivadas , Glicoproteínas/química , Glicosilfosfatidilinositoles/química , Humanos , Interferón gamma/metabolismo , Unión Proteica
10.
BMC Infect Dis ; 13: 587, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24330528

RESUMEN

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. METHODS: Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. RESULTS: The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. CONCLUSIONS: Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets.


Asunto(s)
Cardiomiopatía Chagásica/genética , Quimiocina CCL2/genética , Predisposición Genética a la Enfermedad , Inmunidad Innata , Glicoproteínas de Membrana/genética , Receptores CCR5/genética , Receptores de Interleucina-1/genética , Trypanosoma cruzi/fisiología , Adulto , Anciano , Brasil , Cardiomiopatía Chagásica/inmunología , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/prevención & control , Quimiocina CCL2/inmunología , Femenino , Genotipo , Humanos , Masculino , Glicoproteínas de Membrana/inmunología , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Receptores CCR5/inmunología , Receptores de Interleucina-1/inmunología
11.
J Nutr Biochem ; 112: 109240, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36442716

RESUMEN

Blood orange consumption presents potential health benefits and may modulate epigenetic mechanisms such as microRNAs (miRNAs) expression. MiRNAs are non-coding RNAs responsible for post-transcriptional gene regulation, and these molecules can also be used as biomarkers in body fluids. This study was designed to investigate the effect of chronic blood orange juice (BOJ) intake on the inflammatory response and miRNA expression profile in plasma and blood cells in overweight women. The study cohort was comprised of twenty women aged 18-40 years old, diagnosed as overweight, who consumed 500 mL/d of BOJ for four weeks. Clinical data were collected at baseline and after 4 weeks of juice consumption, e.g., anthropometric and hemodynamic parameters, food intake, blood cell count, and metabolic and inflammatory biomarkers. BOJ samples were analyzed and characterized. Additionally, plasma and blood cells were also collected for miRNA expression profiling and evaluation of the expression of genes and proteins in the MAPK and NFκB signaling pathways. BOJ intake increased the expression of miR-144-3p in plasma and the expression of miR-424-5p, miR-144-3p, and miR-130b-3p in peripheral blood mononuclear cells (PBMC). Conversely, the beverage intake decreased the expression of let-7f-5p and miR-126-3p in PBMC. Computational analyses identified different targets of the dysregulated miRNA on inflammatory pathways. Furthermore, BOJ intake increased vitamin C consumption and the pJNK/JNK ratio and decreased the expression of IL6 mRNA and NFκB protein. These results demonstrate that BOJ regulates the expression of genes involved in the inflammatory process and decreases NFкB-protein expression in PBMC.


Asunto(s)
Citrus sinensis , Jugos de Frutas y Vegetales , Resistencia a la Insulina , MicroARNs , Sobrepeso , Adolescente , Adulto , Femenino , Humanos , Adulto Joven , Biomarcadores , Perfilación de la Expresión Génica , Leucocitos Mononucleares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , FN-kappa B
12.
Front Genet ; 13: 857728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719399

RESUMEN

Zika virus (ZIKV) is an arbovirus mainly transmitted by mosquitos of the genus Aedes. The first cases of ZIKV infection in South America occurred in Brazil in 2015. The infection in humans causes diverse symptoms from asymptomatic to a syndrome-like dengue infection with fever, arthralgia, and myalgia. Furthermore, ZIKV infection during pregnancy is associated with fetal microcephaly and neurological disorders. The identification of host molecular mechanisms responsible for the modulation of different signaling pathways in response to ZIKV is the first step to finding potential biomarkers and therapeutic targets and understanding disease outcomes. In the last decade, it has been shown that microRNAs (miRNAs) are important post-transcriptional regulators involved in virtually all cellular processes. miRNAs present in body fluids can not only serve as key biomarkers for diagnostics and prognosis of human disorders but also contribute to cellular signaling offering new insights into pathological mechanisms. Here, we describe for the first time ZIKV-induced changes in miRNA plasma levels in patients during the acute and recovery phases of infection. We observed that during ZIKV acute infection, among the dysregulated miRNAs (DMs), the majority is with decreased levels when compared to convalescent and control patients. We used systems biology tools to build and highlight biological interactions between miRNAs and their multiple direct and indirect target molecules. Among the 24 DMs identified in ZIKV + patients, miR-146, miR-125a-5p, miR-30-5p, and miR-142-3p were related to signaling pathways modulated during infection and immune response. The results presented here are an effort to open new vistas for the key roles of miRNAs during ZIKV infection.

13.
Transplantation ; 106(2): 289-298, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33859149

RESUMEN

BACKGROUND: Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS: Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6 h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs in the heart, and computational and functional analyses were performed to compare the differentially expressed miRNAs and find their putative targets and their related enriched canonical pathways. RESULTS: An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with 2 miRNAs, miR-30a-3p, and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS: These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD-induced miRNA's on early and late cardiac allograft function must be investigated.


Asunto(s)
Trasplante de Corazón , MicroARNs , Animales , Muerte Encefálica , Trasplante de Corazón/efectos adversos , Humanos , MicroARNs/genética , Ratas , Ratas Wistar , Solución Salina Hipertónica/farmacología , Solución Salina Hipertónica/uso terapéutico , Donantes de Tejidos
14.
J Immunol Res ; 2022: 2734490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903753

RESUMEN

Objectives: To evaluate the potential biological involvement of miRNA expression in the immune response and beta cell function in T1D. Methods: We screened 377 serum miRNAs of 110 subjects divided into four groups: healthy individuals (control group) and patients at different stages of T1D progression, from the initial immunological manifestation presenting islet autoantibodies (AbP group) until partial and strong beta cell damage in the recent (recent T1D group) and long-term T1D, with 2 to 5 years of disease (T1D 2-5y group). Results: The results revealed 69 differentially expressed miRNAs (DEMs) in relation to controls. Several miRNAs were correlated with islet autoantibodies (IA2A, GADA, and Znt8A), age, and C-peptide levels, mainly from AbP, and recent T1D groups pointing these miRNAs as relevant to T1D pathogenesis and progression. Several miRNAs were related to metabolic derangements, inflammatory pathways, and several other autoimmune diseases. Pathway analysis of putative DEM targets revealed an enrichment in pathways related to metabolic syndrome, inflammatory response, apoptosis and insulin signaling pathways, metabolic derangements, and decreased immunomodulation. One of the miRNAs' gene targets was DYRK2 (dual-specificity tyrosine-phosphorylation-regulated kinase 2), which is an autoantigen targeted by an antibody in T1D. ROC curve analysis showed hsa-miR-16 and hsa-miR-200a-3p with AUCs greater than for glucose levels, with discriminating power for T1D prediction greater than glucose levels. Conclusions/Interpretation. Our data suggests a potential influence of DEMs on disease progression from the initial autoimmune lesion up to severe beta cell dysfunction and the role of miRNAs hsa-miR-16 and hsa-miR-200a-3p as biomarkers of T1D progression.


Asunto(s)
MicroARN Circulante , Diabetes Mellitus Tipo 1 , MicroARNs , Autoanticuerpos , MicroARN Circulante/genética , Glucosa , Humanos
15.
Front Cell Infect Microbiol ; 12: 836242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372112

RESUMEN

Chronic Chagas disease (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis compared to other cardiomyopathies. We show the expression and activity of Matrix Metalloproteinases (MMP) and of their inhibitors TIMP (tissue inhibitor of metalloproteinases) in myocardial samples of end stage CCC, idiopathic dilated cardiomyopathy (DCM) patients, and from organ donors. Our results showed significantly increased mRNA expression of several MMPs, several TIMPs and EMMPRIN in CCC and DCM samples. MMP-2 and TIMP-2 protein levels were significantly elevated in both sample groups, while MMP-9 protein level was exclusively increased in CCC. MMPs 2 and 9 activities were also exclusively increased in CCC. Results suggest that the balance between proteins that inhibit the MMP-2 and 9 is shifted toward their activation. Inflammation-induced increases in MMP-2 and 9 activity and expression associated with imbalanced TIMP regulation could be related to a more extensive heart remodeling and poorer prognosis in CCC patients.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Chagásica , Cardiomiopatía Dilatada/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Miocardio
16.
Front Immunol ; 13: 958200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072583

RESUMEN

Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/genética , Epigénesis Genética , Humanos , Factores de Transcripción/genética
18.
Front Immunol ; 11: 1774, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973747

RESUMEN

Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5-7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.


Asunto(s)
Enfermedad de Chagas/parasitología , Proteoma , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/metabolismo , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Biología Computacional , Regulación Viral de la Expresión Génica , Redes Reguladoras de Genes , Genómica , Interacciones Huésped-Patógeno , Humanos , Filogenia , Mapas de Interacción de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vías Secretoras , Transducción de Señal , Trypanosoma cruzi/genética , Trypanosoma cruzi/inmunología , Trypanosoma rangeli/genética , Trypanosoma rangeli/inmunología
19.
PLoS Negl Trop Dis ; 14(12): e0008889, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351798

RESUMEN

Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may play a major pathogenetic role, little is known about the molecular mechanisms responsible for its severity. The aim of this study is to study the genes and microRNAs expression in tissues and their connections in regards to the pathobiological processes. To do so, we integrated for the first time global microRNA and mRNA expression profiling from myocardial tissue of CCC patients employing pathways and network analyses. We observed an enrichment in biological processes and pathways associated with the immune response and metabolism. IFNγ, TNF and NFkB were the top upstream regulators. The intersections between differentially expressed microRNAs and differentially expressed target mRNAs showed an enrichment in biological processes such as Inflammation, inflammation, Th1/IFN-γ-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant response. MicroRNAs also played a role in the regulation of gene expression involved in the key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia. Significantly, a discrete number of differentially expressed microRNAs targeted a high number of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that miRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and therapy.


Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/patología , Regulación de la Expresión Génica/fisiología , MicroARNs/metabolismo , Enfermedad Crónica , Genoma Humano , Humanos , MicroARNs/genética , Análisis de Componente Principal
20.
Methods Mol Biol ; 1955: 203-214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30868529

RESUMEN

MicroRNAs (miRNAs) are a class of small noncoding RNAs (typically 19-23 nucleotides) which act by annealing to partially complementary binding sites present on the 3' untranslated regions (UTR) of messenger RNAs (mRNAs) leading to inhibition of protein translation or by inducing mRNA decay. Since their discovery, miRNAs have come to be recognized as master regulators of gene expression in plant and mammals, controlling tissue-specific protein expression. Up to one-third of mammalian mRNAs are susceptible to miRNA-mediated regulation. It has been shown that miRNAs are determinants of the physiology and pathophysiology of the cardiovascular system, and altered expression of muscle- and/or cardiac-specific miRNAs in myocardial tissue is involved in heart development and cardiovascular diseases, including myocardial hypertrophy, heart failure, and fibrosis. The analysis of miRNA expression pattern provides important information, as well as is a starting point to understand miRNA function in different tissues, during development, and in disease. Several techniques can be used for miRNA profiling analysis like high-throughput sequencing, microarrays, and real-time PCR using microfluidic low-density arrays. This chapter describes the complete methodology to perform miRNA profiling using the stem-loop reverse-transcription (RT)-based TaqMan® MicroRNA low-density arrays (TLDA) method. This methodology was used to perform miRNA profiling in the heart of T. cruzi acutely infected mice.


Asunto(s)
Enfermedad de Chagas/genética , Perfilación de la Expresión Génica/métodos , Corazón/parasitología , MicroARNs/genética , Transcriptoma , Trypanosoma cruzi/fisiología , Animales , Enfermedad de Chagas/parasitología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Interacciones Huésped-Parásitos , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Trypanosoma cruzi/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda